Publications by authors named "T Crepaldi"

The MET oncogene, encoding the hepatocyte growth factor (HGF) receptor, plays a key role in tumorigenesis, invasion, and resistance to therapy, yet its full biological functions and activation mechanisms remain incompletely understood. A feature of MET is its extensive interaction network, encompassing the following: (i) receptor tyrosine kinases (RTKs); (ii) co-receptors (e.g.

View Article and Find Full Text PDF

The MET receptor, commonly known as HGF (hepatocyte growth factor) receptor, is a focus of extensive scientific research. MET has been linked to embryonic development, tissue regeneration following injury, tumorigenesis, and cancer metastasis. These functions underscore its involvement in numerous cellular processes, including stemness, proliferation, motility, cell dissociation, and survival.

View Article and Find Full Text PDF

The discovery and subsequent research on the MET oncogene's role in cancer onset and progression have illuminated crucial insights into the molecular mechanisms driving malignancy. The identification of MET as the hepatocyte growth factor (HGF) receptor has paved the path for characterizing the MET tyrosine kinase activation mechanism and its downstream signaling cascade. Over the past thirty years, research has established the importance of HGF/MET signaling in normal cellular processes, such as cell dissociation, migration, proliferation, and cell survival.

View Article and Find Full Text PDF

The involvement of the N-methyl-D-aspartate receptor (NMDAR), a glutamate-gated ion channel, in promoting the invasive growth of cancer cells is an area of ongoing investigation. Our previous findings revealed a physical interaction between NMDAR and MET, the hepatocyte growth factor (HGF) receptor. However, the molecular mechanisms underlying this NMDAR/MET interaction remain unclear.

View Article and Find Full Text PDF

Glutamate is a key player in excitatory neurotransmission in the central nervous system (CNS). The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel which presents several unique features and is involved in various physiological and pathological neuronal processes. Thanks to great efforts in neuroscience, its structure and the molecular mechanisms controlling its localization and functional regulation in neuronal cells are well known.

View Article and Find Full Text PDF