Developments in droplet microfluidics have facilitated an era of high-throughput, sensitive single-cell, or single-molecule measurements capable of tackling the heterogeneity present in biological systems. Relying on single emulsion (SE) compartments, droplet assays achieve absolute quantification of nucleic acids, massively parallel single-cell profiling, and more. Double emulsions (DEs) have seen recent interest for their potential to build upon SE techniques.
View Article and Find Full Text PDFMedical students experience racial and sociopolitical trauma that disrupts their learning and wellbeing. University of California, San Francisco (UCSF) School of Medicine students advocated for a systems approach to responding to traumatic events. Students partnered with educators to introduce an innovative protocol that affords short-term flexibility in curricular expectations (e.
View Article and Find Full Text PDFThe segmented structure of the Influenza A virus (IAV) genome facilitates reassortment, segment exchange during co-infection. When divergent strains mix across human, agricultural, and wildlife reservoirs novel strains are generated, which has been the source of pandemics. Due to the limited throughput and infection-based assays, IAV reassortment studies has been limited to permissive reassortment.
View Article and Find Full Text PDFThe advancement of point-of-care diagnostics is crucial to improving patient outcomes, especially in areas with low access to hospitals or specialized laboratories. In particular, rapid, sensitive, and multiplexed detection of disease biomarkers has great potential to achieve accurate diagnosis and inform high quality care for patients. Our Coulter counting and immunocapture based detection system has previously shown its broad applicability in the detection of cells, proteins, and nucleic acids.
View Article and Find Full Text PDFSepsis is a life-threatening dysfunction of organ systems caused by a dysregulated immune system because of an infectious process. It remains one of the leading causes of hospital mortality and of hospital readmissions in the United States. Mortality from sepsis increases with each hour of delayed treatment, therefore, diagnostic devices that can reduce the time from the onset of a patient's infection to the delivery of appropriate therapy are urgently needed.
View Article and Find Full Text PDF