Photochem Photobiol
December 2009
Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores.
View Article and Find Full Text PDFOur goal was to ultimately predict the sensitivity of untested bacteria (including those of biodefense interest) to ultraviolet (UV) radiation. In this study, we present an overview and analysis of the relevant 254 nm data previously reported and available in the literature. The amount of variability in this data prevented us from determining an "average" response for any bacterium.
View Article and Find Full Text PDFAction spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response.
View Article and Find Full Text PDFA mutational tester strain (JP10) of the nematode C. elegans was used to capture recessive lethal mutations in a balanced 300 essential gene autosomal region. The probability of converting a radiation interaction into a lethal mutation was measured in young gravid adults after exposure to fluences of 254-nm ultraviolet radiation (UV) ranging from 0 to 300 Jm-2.
View Article and Find Full Text PDF