J Therm Spray Technol
January 2022
Diamond-reinforced metal matrix composites (DMMC) prepared by cold spray are emerging materials simultaneously featuring outstanding thermal conductivity and wear resistance. In our paper, their mechanical and fatigue properties relevant to perspective engineering applications were investigated using miniature bending specimens. Two different diamond mass concentrations (20 and 50%) embedded in two metal matrices (Al-lighter than diamond, Cu-heavier than diamond) were compared with the respective cold-sprayed pure metals, as well as bulk Al and Cu references.
View Article and Find Full Text PDFIn this work, CoCrNi, FeCoCrNi and CoCrFeMnNi concentrated alloys with a Y-Ti oxide particle dispersion were prepared by mechanical alloying and Spark Plasma Sintering. The alloy consists of an FCC Ni-based matrix with a Y-Ti oxide dispersion and additional phases of CrC and CrO. The effect of Fe, Mn, and Y-Ti oxide particles on the formation of oxide scales and the composition of the adjacent CoCrNi and FeCoCrNi alloys was studied.
View Article and Find Full Text PDFCeramic AlO-ZrO-SiO coatings with near eutectic composition were plasma sprayed using hybrid water stabilized plasma torch (WSP-H). The as-sprayed coatings possessed fully amorphous microstructure which can be transformed to nanocrystalline by further heat treatment. The amorphous/crystalline content ratio and the crystallite sizes can be controlled by a specific choice of heat treatment conditions, subsequently leading to significant changes in the microstructure and mechanical properties of the coatings, such as hardness or wear resistance.
View Article and Find Full Text PDFThree sets of hydroxyapatite and rutile-TiO coatings were plasma sprayed onto metallic substrates. The spray parameters of the sets were modified so as to obtain different in-flight temperatures and velocities of the powder particles within the plasma jet (ranging from 1778 to 2385 K and 128 to 199 m s, respectively). Fatigue endurance of the coated specimens was then tested.
View Article and Find Full Text PDFA composite of powders of semi-Heusler ferromagnetic shape memory and pure titanium was successfully prepared by spark plasma sintering at the temperature of 950 °C. Sintering resulted in the formation of small precipitates and intermetallic phases at the heterogeneous interfaces. Various complementary experimental methods were used to fully characterize the microstructure.
View Article and Find Full Text PDF