Introduction: This large case-control study explored the application of machine learning models to identify risk factors for primary invasive incident breast cancer (BC) in the Iranian population. This study serves as a bridge toward improved BC prevention, early detection, and management through the identification of modifiable and unmodifiable risk factors.
Methods: The dataset includes 1,009 cases and 1,009 controls, with comprehensive data on lifestyle, health-behavior, reproductive and sociodemographic factors.
Process Mining is a technique looking into the analysis and mining of existing process flow. On the other hand, Machine Learning is a data science field and a sub-branch of Artificial Intelligence with the main purpose of replicating human behavior through algorithms. The separate application of Process Mining and Machine Learning for healthcare purposes has been widely explored with a various number of published works discussing their use.
View Article and Find Full Text PDFWith the increasing demand for hospital services amidst the COVID-19 pandemic, allocation of limited public resources and management of healthcare services are of paramount importance. In the field of patient flow scheduling, previous research primarily focused on classical-based objective functions, while ignoring environmental-based objective functions. This study presents a flexible job shop scheduling problem to optimize patient flow and, thereby, minimize the total carbon footprint, as the sustainability-based objective function.
View Article and Find Full Text PDFPurpose: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study.
View Article and Find Full Text PDFStud Health Technol Inform
January 2022
Zoning classification is a rating mechanism, which uses a three-tier color coding to indicate perceived risk from the patients' conditions. It is a widely adopted manual system used across mental health settings, however it is time consuming and costly. We propose to automate classification, by adopting a hybrid approach, which combines Temporal Abstraction to capture the temporal relationship between symptoms and patients' behaviors, Natural Language Processing to quantify statistical information from patient notes, and Supervised Machine Learning Models to make a final prediction of zoning classification for mental health patients.
View Article and Find Full Text PDF