Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered. In GeTe and related IV-VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications. Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique.
View Article and Find Full Text PDFThe scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity odd) and magnetic (time odd). A zero-magnetization ferromagnet Sm_{0.976}Gd_{0.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2019
Spin wave dispersion in the frustrated fcc type-III antiferromagnet MnS has been determined by inelastic neutron scattering using a triple-axis spectrometer. Existence of multiple spin wave branches, with significant separation between high-energy and low-energy modes highlighting the intrinsic magnetic frustration effect on the fcc lattice, is explained in terms of a spin wave analysis carried out for the antiferromagnetic Heisenberg model for this S = 5/2 system with nearest and next-nearest-neighbor exchange interactions. Comparison of the calculated dispersion with spin wave measurement also reveals small suppression of magnetic frustration resulting from reduced exchange interaction between frustrated spins, possibly arising from anisotropic deformation of the cubic structure.
View Article and Find Full Text PDFWe study the spontaneous crystallization of an assembly of highly monodisperse steel spheres under shaking, as it evolves from localized icosahedral ordering towards a packing reaching crystalline ordering. Towards this end, real space neutron tomography measurements on the granular assembly are carried out, as it is systematically subjected to a variation of frequency and amplitude. As expected, we see a presence of localized icosahedral ordering in the disordered initial state (packing fraction ≈ 0.
View Article and Find Full Text PDF