Publications by authors named "T Cesca"

Back in 1959, Richard Feynman, in his famous lecture, stated that "", which made us aware of the possibilities of nanotechnology, i [...

View Article and Find Full Text PDF

Vanadium dioxide has attracted much interest due to the drastic change of the electrical and optical properties it exhibits during the transition from the semiconductor state to the metallic state, which takes place at a critical temperature of about 68 °C. Much study has been especially devoted to developing advanced fabrication methodologies to improve the performance of VO thin films for phase-change applications in optical devices. Films structural and morphological characterisation is normally performed with expensive and time consuming equipment, as x-ray diffractometers, electron microscopes and atomic force microscopes.

View Article and Find Full Text PDF

Metasurfaces tailor electromagnetic confinement at the nanoscale and can be appropriately designed for polarization-dependent light-matter interactions. Adding the asymmetry degree to the desing allows for circular polarizations of opposite handedness to be differently absorbed or emitted, which is of interest in fields spanning from chiral sensing to flat optics. Here, we show that simple, low-cost asymmetric metasurfaces can control Stokes parameters in the transmitted far-field.

View Article and Find Full Text PDF

Chirality, the lack of mirror symmetry, can be mimicked in nanophotonics and plasmonics by breaking the symmetry in light-nanostructure interaction. Here we report on versatile use of nanosphere lithography for the fabrication of low-cost metasurfaces, which exhibit broadband handedness- and angle-dependent extinction in the near-infrared range, thus offering extrinsic chiro-optical behavior. We measure wavelength and angle dependence of the extinction for four samples.

View Article and Find Full Text PDF

Developing intense, coherent and ultra-fast light sources with nanoscale dimensions is a crucial issue for many applications in nanophotonics. To date, plasmonic nanolasers represent one of the most promising nanophotonic devices capable of this remarkable feature. In the present work we report on the emission properties of two-dimensional Au hexagonal nanodome arrays, fabricated by nanosphere lithography, coupled with a dye liquid solution used as the gain medium.

View Article and Find Full Text PDF