Retinoic acid receptor β2 (RARβ2) is an emerging therapeutic target for spinal cord injuries (SCIs) with a unique multimodal regenerative effect. We have developed a first-in-class RARβ agonist drug, C286, that modulates neuron-glial pathways to induce functional recovery in a rodent model of sensory root avulsion. Here, using genome-wide and pathway enrichment analysis of avulsed rats' spinal cords, we show that C286 also influences the extracellular milieu (ECM).
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2019
Oxadiazole replacement of an amide linkage in an RARα agonist template 1, followed by lead optimisation, has produced a highly potent and selective RARβ agonist 4-(5-(4,7-dimethylbenzofuran-2-yl)-1,2,4-oxadiazol-3-yl)benzoic acid (10) with good oral bioavailability in the rat and dog. This molecule increases neurite outgrowth in vitro and induces sensory axon regrowth in vivo in a rodent model of avulsion and crush injury, and thus has the potential for the treatment of nerve injury.
View Article and Find Full Text PDFNeural Regen Res
December 2017
This mini review describes the current surgical strategy for restoring function after traumatic spinal nerve root avulsion in brachial or lumbosacral plexus injury in man. As this lesion is a spinal cord or central nervous injury functional return depends on spinal cord nerve cell growth within the central nervous system. Basic science, clinical research and human application has demonstrated good and useful motor function after ventral root avulsion followed by spinal cord reimplantation.
View Article and Find Full Text PDFStimulation of retinoic acid (RA) mediated signalling pathways following neural injury leads to regeneration in the adult nervous system and numerous studies have shown that the specific activation of the retinoic acid receptor β (RARβ) is required for this process. Here we identify a novel mechanism by which neuronal RARβ activation results in the endogenous synthesis of RA which is released in association with exosomes and acts as a positive cue to axonal/neurite outgrowth. Using an established rodent model of RARβ induced axonal regeneration, we show that neuronal RARβ activation upregulates the enzymes involved in RA synthesis in a cell specific manner; alcohol dehydrogenase7 (ADH7) in neurons and aldehyde dehydrogenase 2 (Raldh2) in NG2 expressing cells (NG2+ cells).
View Article and Find Full Text PDF