Background: Rapid kilovolt (kV)-switching dual-energy computed tomography (DECT) has been increasingly applied to the measurement of lumbar spine bone mineral density (BMD) in humans and animal models. The objective of this study was to investigate the optimal parameters for the measurement of vertebral BMD. The BMD of the spinal model was measured by means of DECT in combination with different noise index (NI) and preset adaptive statistical iterative reconstruction Veo (ASiR-V) levels.
View Article and Find Full Text PDFThe standard therapy for locally unresectable advanced non-small cell lung cancer (NSCLC) is comprised of chemoradiotherapy (CRT) before immunotherapy (IO) consolidation. However, how to predict treatment outcomes and recognize patients that will benefit from IO remain unclear. This study aimed to identify prognostic biomarkers by integrating computed tomography (CT)-based radiomics and genomics.
View Article and Find Full Text PDFStudy Design: A retrospective cohort study.
Purpose: To evaluate whether using antibiotic-impregnated bone graft (AIBG) enhances infection control and shortens the postoperative course of pyogenic discitis and vertebral osteomyelitis (PDVO).
Overview Of Literature: Surgical treatment of PDVO is indicated for neurological deficit, instability, unknown pathogen, or poorly controlled infection.
Brodalumab, a humanized monoclonal antibody that targets the interleukin-17 receptor A, is primarily used to manage moderate-to-severe plaque psoriasis. Although it has demonstrated favorable efficacy and safety in clinical trials, the strict inclusion and exclusion criteria may not fully reflect its safety profile in real-world settings. As its use becomes more widespread in clinical practice, understanding its safety in real-world applications is crucial.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).
View Article and Find Full Text PDF