Publications by authors named "T C Verwoerd"

(1) Influenza viruses constantly change and evade prior immune responses, forcing seasonal re-vaccinations with updated vaccines. Current FDA-approved vaccine manufacturing technologies are too slow and/or expensive to quickly adapt to mid-season changes in the virus or to the emergence of pandemic strains. Therefore, cost-effective vaccine technologies that can quickly adapt to newly emerged strains are desirable.

View Article and Find Full Text PDF

A fusion protein based on the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and the enzyme laminarinase (LamA) from Pyrococcus furiosus was designed and overexpressed in Escherichia coli. Due to the construction principle, the S-layer fusion protein fully retained the self-assembly capability of the S-layer moiety, while the catalytic domain of LamA remained exposed at the outer surface of the formed protein lattice. The enzyme activity of the S-layer fusion protein monolayer obtained upon recrystallization on silicon wafers, glass slides and different types of polymer membranes was determined colorimetrically and related to the activity of sole LamA that has been immobilized with conventional techniques.

View Article and Find Full Text PDF

As a first step toward the exploitation of the disaccharide trehalose as a stress-protective and preservative agent in plants, we engineered trehalose biosynthesis in tobacco (Nicotiana tabacum) and potato (Solanum tuberosum) by introducing the otsA and otsB genes from Escherichia coli, which encode trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase, respectively. In leaves of transgenic tobacco plants, very low levels of trehalose accumulation were obtained (0.11 mg g-1 fresh weight), whereas in transgenic potato tubers, no trehalose accumulated at all.

View Article and Find Full Text PDF

Phytase from Aspergillus niger increases the availability of phosphorus from feed for monogastric animals by releasing phosphate from the substrate phytic acid. A phytase cDNA was constitutively expressed in transgenic tobacco (Nicotiana tabacum) plants. Secretion of the protein to the extracellular fluid was established by use of the signal sequence from the tobacco pathogen-related protein S.

View Article and Find Full Text PDF

We have used a modified CaMV 35S promoter to direct the expression of chimaeric genes encoding human serum albumin (HSA) in transgenic potato and tobacco plants. To secrete the protein, either the human prepro-sequence or the signal sequence from the extracellular tobacco protein PR-S was used. We demonstrate secretion of HSA with both types of signal sequences in transgenic leaf tissue and in suspension cultures.

View Article and Find Full Text PDF