In the quest for sustainable hydrogen production via water electrolysis, the development of high-performance, noble-metal-free catalytic systems is highly desired. Herein, we proposed an innovative strategy for the development of an electrocatalyst by refining the surface characteristics of a NiFeP alloy through microbiological techniques and subsequent enrichment of active sites by tailoring 3D hierarchical flower-like structures with intact and interconnected two-dimensional (2D) CoO. The resultant 3D CoO@NiFeP-5/24h has a porous structure comprised of intercrossed nanoparticles covering the entirety of the catalytic surface.
View Article and Find Full Text PDFThe present paper reports for the first time the development and application of novel Zn wetted CeO (Zn/CeO) composite galvanic zinc coating to combat microbial induced corrosion (MIC). Zinc metal-metal interaction causes the effective incorporation of composite into the galvanic coating and accordingly increases the active sites for antibiofouling activity. The developed coatings are explored for their anticorrosion/antibiofouling characteristics toward MIC induced by cultured seawater consortia.
View Article and Find Full Text PDFMicrobial biofilm can effectively alter the electrochemical characteristics at metal/solution interface that can either accelerate or decelerate corrosion. The present paper reports about microbiologically induced corrosion inhibition (MICI) using Pseudomonas putida as a dominant bacterium under aerobic condition. Effective corrosion inhibition is achieved by the synergistic metabolic action of P.
View Article and Find Full Text PDFThe present paper reports about the superior performance of some amine-based proton sources in enhancing the photocatalytic efficiency of Fe2O3-TiO2 composite during a water-splitting reaction. The band gap of the Fe2O3-TiO2 catalyst is tuned to 2.3 eV by varying the Fe content.
View Article and Find Full Text PDF