Nanostructured ferritic alloys (NFAs), such as oxide-dispersion strengthened (ODS) alloys, play a vital role in advanced fission and fusion reactors, offering superior properties when incorporating nanoparticles under irradiation. Despite their importance, the high cost of mass-producing NFAs through mechanical milling presents a challenge. This study delves into the microstructure-mechanical property correlations of three NFAs produced using a novel, cost-effective approach combining severe plastic deformation (SPD) with the continuous thermomechanical processing (CTMP) method.
View Article and Find Full Text PDFThermomechanical processing (TMP) of ferritic-martensitic (FM) steels, such as HT9 (Fe-12Cr-1MoWV) steels, involves normalizing, quenching, and tempering to create a microstructure of fine ferritic/martensitic laths with carbide precipitates. HT9 steels are used in fast reactor core components due to their high-temperature strength and resistance to irradiation damage. However, traditional TMP methods for these steels often result in performance limitations under irradiation, including embrittlement at low temperatures (<~430 °C), insufficient strength and toughness at higher temperatures (>500 °C), and void swelling after high-dose irradiation (>200 dpa).
View Article and Find Full Text PDFIn this study, carbon blocks were fabricated using isotropic coke and coal tar pitch as raw materials, with a variation in pressure during cold isostatic pressing (CIP). The CIP pressure was set to 50, 100, 150, and 200 MPa, and the effect of the CIP pressure on the mechanical and electrical properties of the resulting carbon blocks was analyzed. Microstructural observations confirmed that, after the kneading, the surface of isotropic coke was covered with the pitch components.
View Article and Find Full Text PDFThe objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay.
View Article and Find Full Text PDFDysregulated activation of the complement system is implicated in the onset or progression of several diseases. Most clinical-stage complement inhibitors target the inactive complement proteins present at high concentrations in plasma, which increases target-mediated drug disposition and necessitates high drug levels to sustain therapeutic inhibition. Furthermore, many efforts are aimed at inhibiting only terminal pathway activity, which leaves opsonin-mediated effector functions intact.
View Article and Find Full Text PDF