Whether there exist finite-time blow-up solutions for the 2D Boussinesq and the 3D Euler equations are of fundamental importance to the field of fluid mechanics. We develop a new numerical framework, employing physics-informed neural networks, that discover, for the first time, a smooth self-similar blow-up profile for both equations. The solution itself could form the basis of a future computer-assisted proof of blow-up for both equations.
View Article and Find Full Text PDFThe present work considers systems whose dynamics are governed by the nonlinear interactions among groups of 6 nonlinear waves, such as those described by the unforced quintic nonlinear Schrödinger equation. Specific parameter regimes in which ensemble-averaged dynamics of such systems with finite size are accurately described by a wave kinetic equation, as used in wave turbulence theory, are theoretically predicted. In addition, the underlying reasons that the wave kinetic equation may be a poor predictor of wave dynamics outside these regimes are also discussed.
View Article and Find Full Text PDFPoison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus).
View Article and Find Full Text PDFThe bone marrow produces large numbers of monocytes daily, but the mechanisms balancing production and elimination are unknown. In this report we demonstrate that macrophages (M phi) undergo apoptosis after activating autologous CD4+ cells. Since apoptosis is a genetically programmed response, these results argue that M phi death can be part of a normal immune response.
View Article and Find Full Text PDF