Publications by authors named "T Bryld"

We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization to a maximum of 9°C per incorporation.

View Article and Find Full Text PDF

Here, we present our synthesis of amino-LNA with a C6-linker and hybridization studies of these. A cholesterol moiety was attached at the end of the C6-linker. This resulted in drastic drops against DNA of the modified oligonucleotide.

View Article and Find Full Text PDF

We present our studies on the ability of several different nucleotide analogs as triplex-forming oligonucleotides. The modifications tested include 4'-C-hydroxymethyl, LNA, 2'-amino-LNA and N2'-functionalized 2'-amino-LNA. Triplexes containing monomers of N2'-glycyl-functionalized 2'-amino-LNA are particularly stable.

View Article and Find Full Text PDF

Incorporation of a novel pyren-1-ylcarbonyl-functionalized 4'-C-piperazinomethyl-DNA monomer into oligodeoxynucleotides leads to increased thermal stability of duplexes with DNA complements but reduced thermal stability of duplexes with RNA complements. This DNA-selective hybridization is explored for recognition of double-stranded DNA by a novel dual strand invasion approach.

View Article and Find Full Text PDF

Double-stranded oligonucleotides (ODNs) containing the consensus binding sequence of a transcription factor provide a rationally designed tool to manipulate gene expression at the transcriptional level by the decoy approach. However, modifications introduced into oligonucleotides to increase stability quite often do not guarantee that transcription factor affinity and/or specificity of recognition are retained. We have previously evaluated the use of locked nucleic acids (LNA) in the design of decoy molecules for the transcription factor kappaB.

View Article and Find Full Text PDF