Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo.
View Article and Find Full Text PDFWe present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies.
View Article and Find Full Text PDFWe report a measurement of the energy spectrum of cosmic rays above 2.5×10^{18} eV based on 215 030 events. New results are presented: at about 1.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
November 2019
The next generation magnetic spectrometer in space, AMS-100, is designed to have a geometrical acceptance of 100 m sr and to be operated for at least ten years at the Sun-Earth Lagrange Point 2. Compared to existing experiments, it will improve the sensitivity for the observation of new phenomena in cosmic rays, and in particular in cosmic antimatter, by at least a factor of 1000. The magnet design is based on high temperature superconductor tapes, which allow the construction of a thin solenoid with a homogeneous magnetic field of 1 Tesla inside.
View Article and Find Full Text PDFUltrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.
View Article and Find Full Text PDF