Publications by authors named "T Brenes-Arguedas"

The Global Plant Health Assessment (GPHA) is a collective, volunteer-based effort to assemble expert opinions on plant health and disease impacts on ecosystem services based on published scientific evidence. The GPHA considers a range of forest, agricultural, and urban systems worldwide. These are referred to as (Ecoregion × Plant System), i.

View Article and Find Full Text PDF

In this Letter, the y axis of the right-hand panel of Fig. 2a was mislabelled 'Phosphomonoesterase' instead of 'Phosphodiesterase'. This error has been corrected online.

View Article and Find Full Text PDF

Phosphorus availability is widely assumed to limit primary productivity in tropical forests, but support for this paradigm is equivocal. Although biogeochemical theory predicts that phosphorus limitation should be prevalent on old, strongly weathered soils, experimental manipulations have failed to detect a consistent response to phosphorus addition in species-rich lowland tropical forests. Here we show, by quantifying the growth of 541 tropical tree species across a steep natural phosphorus gradient in Panama, that phosphorus limitation is widespread at the level of individual species and strengthens markedly below a threshold of two parts per million exchangeable soil phosphate.

View Article and Find Full Text PDF

A multi-stemmed growth form may be an important trait enabling the persistence of individual shrubs in the forest understory. With the aim of evaluating the role of multiple stems, neighbor competition and soil nutrients in shrub performance, we study the dynamics of two temperate multi-stemmed shrub species. We modeled stem growth and survival of Corylus mandshurica and Acer barbinerve in two temperate forests with differing structure in northeastern China.

View Article and Find Full Text PDF

Many models have been proposed to explain the possible role of pests in the coexistence of a high diversity of plant species in tropical forests. Prominent among them is the Janzen-Connell model. This model suggests that specialized herbivores and pathogens limit tree recruitment as a function of their density or proximity to conspecifics.

View Article and Find Full Text PDF