Publications by authors named "T Braulke"

Article Synopsis
  • Glycosylation is crucial for modifying lipids and sorting proteins, with its regulation involving a unique distribution of enzymes in the Golgi and the action of SPPL3.
  • In cells lacking the retention factor LYSET/TMEM251, there is increased secretion of a Golgi protein, B4GALT5, due to disrupted M6P tagging, which typically marks proteins for lysosomal degradation.
  • The study reveals that GOLPH3 and GOLPH3L adaptors play a critical role in stabilizing the LYSET-GNPT complex, maintaining proper Golgi function, and ensuring efficient lysosomal enzyme processing.
View Article and Find Full Text PDF

Lysosomes degrade and recycle macromolecules that are delivered through the biosynthetic, endocytic, and autophagic routes. Hydrolysis of the different classes of macromolecules is catalyzed by about 70 soluble enzymes that are transported from the Golgi apparatus to lysosomes in a mannose 6-phosphate (M6P)-dependent process. The molecular machinery that generates M6P tags for receptor-mediated targeting of lysosomal enzymes was thought to be understood in detail.

View Article and Find Full Text PDF

Mucopolysaccharidosis VI (MPS VI) is a hereditary lysosomal storage disease caused by the absence of the enzyme arylsulfatase B (ARSB). Craniofacial defects are common in MPS VI patients and manifest as abnormalities of the facial bones, teeth, and temporomandibular joints. Although enzyme replacement therapy (ERT) is the treatment of choice for MPS VI, the effects on the craniofacial and dental structures are still poorly understood.

View Article and Find Full Text PDF

Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII).

View Article and Find Full Text PDF