Pyroelectric (PE) detection technologies have attracted extensive attention due to the cooling-free, bias-free, and broadband properties. However, the PE signals are generated by the continuous energy conversion processes from light, heat, to electricity, normally leading to very slow response speeds. Herein, we design and fabricate a PE detector which shows extremely fast response in near-infrared (NIR) band by combining with the inhomogeneous plasmonic metasurface.
View Article and Find Full Text PDFThe cooling power of a radiative cooler is more than halved in the tropics, e.g., Singapore, because of its harsh weather conditions including high humidity (84% on average), strong downward atmospheric radiation (∼40% higher than elsewhere), abundant rainfall, and intense solar radiation (up to 1200 W/m with ∼58% higher UV irradiation).
View Article and Find Full Text PDFPopulations of nearly identical chemical and biological microparticles include the synthetic microbeads used in cosmetic, biomedical, agri-food, and pharmaceutical industries as well as the class of living microorganisms such as yeast, pollen, and biological cells. Herein, we identify simultaneously the size and chemical nature of spherical microparticle populations with diameters larger than 1 μm. Our analysis relies on the extraction of both physical and chemical signatures from the same optical spectrum recorded using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFGas sensors that can measure multiple pollutants simultaneously are highly desirable for on-site air pollution monitoring at various scales, both indoor and outdoor. Herein, we introduce a low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously, thus allowing for true analytical measurement. It is a spectral sensor consisting of a Fourier-transform infrared (FTIR) gas analyzer based on a mid-infrared (MIR) spectrometer.
View Article and Find Full Text PDF