Publications by authors named "T Bird-Gardiner"

This experiment investigated phenotypic and genetic relationships between carbon dioxide production, methane emission, feed intake, and postweaning traits in Angus cattle. Respiration chamber data on 1096 young bulls and heifers from 2 performance recording research herds of Angus cattle were analyzed to provide phenotypic and genetic parameters for carbon dioxide production rate (CPR; n = 425, mean 3,010 ± SD 589 g/d) and methane production rate (MPR; n = 1,096, mean 132.8 ± SD 25.

View Article and Find Full Text PDF

Angus cattle from 2 beef cattle projects on which carbon dioxide production rate (CPR) was measured were used in this study to examine the relationships among BW, DMI, and carbon dioxide traits of beef cattle fed ad libitum on a roughage diet or a grain-based feedlot diet, and to evaluate potential proxies for DMI and feed efficiency. In both projects, the GreenFeed Emission Monitoring system, which provides multiple short-term breath measures of carbon dioxide production, was used as a tool to measure CPR. The data were from 119 Angus heifers over 15 d on a roughage diet and 326 Angus steers over 70 d on a feedlot diet.

View Article and Find Full Text PDF

Angus cattle from 2 beef cattle projects in which daily methane production (MPR) was measured were used in this study to examine the nature of the relationships among BW, DMI, and methane traits of beef cattle fed ad libitum on a roughage diet or a grain-based feedlot diet. In both projects methane was measured using the GreenFeed Emission Monitoring system, which provides multiple short-term breath measures of methane production. The data used for this study were from 119 Angus heifers over 15 d on a roughage diet and 326 Angus steers over 70 d on a feedlot diet.

View Article and Find Full Text PDF

Respiration chambers are considered the reference method for quantifying the daily CH production rate (MPR) and CO production rate (CPR) of cattle; however, they are expensive, labor intensive, cannot be used in the production environment, and can be used to assess only a limited number of animals. Alternative methods are now available, including those that provide multiple short-term measures of CH and CO, such as the GreenFeed Emission Monitoring (GEM) system. This study was conducted to provide information for optimizing test procedures for estimating MPR and CPR of cattle from multiple short-term CH and CO records.

View Article and Find Full Text PDF

Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits.

View Article and Find Full Text PDF