Med Hypotheses
December 2001
Autism includes deficits in communications skills and is associated with intestinal pathology. Numerous parents and some physicians report that an autistic child's attention and language improve in response to treatments which eliminate certain dietary antigens and/or which improve intestinal health. For at least some autism-spectrum children, the link between intestinal pathology, attention, and language may derive from shared neuroanatomic pathways within the anterior insular cortex (aIC); from a neurotrophic virus such as herpes simplex (HSV) migrating within afferents to the insular cortex; and/or from synaptic exhaustion in the aIC as induced by chronically inappropriate neuronal activity in the enteric nervous system and/or its vagal efferents.
View Article and Find Full Text PDFSexual orientation is encoded within immune-cell subsets (ICS) of mucosal and epithelial tissues. Gender orientation may be encoded within other ICS. Many immune cells: recognize and react to H-Y and H-X antigens; and enact these perceptions and reactions in accord with the perceiver's and the perceived's MHC haplotype, XX or XY status, and immune-self recognition.
View Article and Find Full Text PDFImmune panels of many autism-spectrum children reveal signs of atypical infections and shifted cell counts. In conjunction with trait-related cerebral hypometabolism and hypoperfusion, these findings suggest a hypothesis: Several autism-spectrum subgroups derive from intra-monocyte pathogens such as measles virus, cytomegalovirus, human herpesvirus 6, and Yersinia enterocolitica. Furthermore, with much inter-child variation, their effects manifest as diminished hematopoiesis, impaired peripheral immunity, and altered blood-brain barrier function often accompanied by demyelination.
View Article and Find Full Text PDFAutism is a syndrome characterized by impairments in social relatedness and communication, repetitive behaviors, abnormal movements, and sensory dysfunction. Recent epidemiological studies suggest that autism may affect 1 in 150 US children. Exposure to mercury can cause immune, sensory, neurological, motor, and behavioral dysfunctions similar to traits defining or associated with autism, and the similarities extend to neuroanatomy, neurotransmitters, and biochemistry.
View Article and Find Full Text PDF