Publications by authors named "T Berzina"

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P.

View Article and Find Full Text PDF

The features of spectrophotometric scanner, generally exploited in the artwork field, are here considered in a non-conventional context to characterize the networks created by Physarum polycephalum slime mold during its motion on glass substrates covered with polyaniline: a polymer that varies its color and conductive properties according to the redox state. The used technique allowed the investigation of the effects coming out from the interaction between P. polycephalum and polyaniline.

View Article and Find Full Text PDF

A hybrid bio-organic electrochemical transistor was developed by interfacing an organic semiconductor, poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate), with the cell. The system shows unprecedented performances since it could be operated both as a transistor, in a three-terminal configuration, and as a memristive device in a two terminal configuration mode. This is quite a remarkable achievement since, in the transistor mode, it can be used as a very sensitive bio-sensor directly monitoring biochemical processes occurring in the cell, while, as a memristive device, it represents one of the very first examples of a bio-hybrid system demonstrating such a property.

View Article and Find Full Text PDF

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P.

View Article and Find Full Text PDF

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P.

View Article and Find Full Text PDF