Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
August 2023
Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics.
View Article and Find Full Text PDFInsulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) affects Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways.
View Article and Find Full Text PDFThe growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain.
View Article and Find Full Text PDF