Publications by authors named "T B Sivanarayanan"

The present study evaluated healing potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and BM-MSCs-conditioned medium (BM-MSCs-CM) for acute and subacute injuries in the rabbit peripheral nerve injury model. The regenerative capacity of MSCs was evaluated in 40 rabbits divided into eight groups, four groups each for acute and subacute injury models. BM-MSCs and BM-MSCS-CM were prepared by isolating allogenic bone marrow from the iliac crest.

View Article and Find Full Text PDF

The concept of substrate inhibition to prevent its phosphorylation has potential in drug discovery and is envisioned to treat the autoimmune disorder multiple sclerosis (MS). Glia maturation factor-β (GMF-β) Ser83 phosphorylation by protein kinase A (PKA) is pivotal in the activation of GMF-β-p38MAPK-NFκB biochemical pathway towards proinflammatory response induction in experimental autoimmune encephalomyelitis (EAE). Using structure-based drug design, we identified the small molecule inhibitor 1-H-indazole-4yl methanol (GMFBI.

View Article and Find Full Text PDF

We report an osteoconducting magnetic 3D scaffold using Fe doped nano-hydroxyapatite-Alginate-Gelatin (AGHFe1) for Magnetic Resonance Imaging based non-invasive monitoring of bone tissue regeneration. In rat cranial defect model, the scaffold facilitated non-invasive monitoring of cell migration, inflammatory response and matrix deposition by unique changes in transverse relaxation time (T2). Cell infiltration resulted in a considerable increase in T2 from ~37 to ~62 ms, which gradually returned to that of native bone (~23 ms) by 90 days.

View Article and Find Full Text PDF

Glioma stem cells (GSC) present a critical therapeutic challenge for glioblastoma multiforme (GBM). Drug screening against GSC demands development of novel in vitro and in vivo platforms that can mimic brain microenvironment and support GSC maintenance and tumorigenesis. Here, we report, a 3-dimensionel (3D) biomimetic macro-porous scaffold developed by incorporating hyaluronic acid, porcine brain extra cellular matrix (ECM) and growth factors that facilitates regeneration of GBM from primary GSCs, ex vivo and in vivo.

View Article and Find Full Text PDF