Publications by authors named "T B Sculley"

Epstein-Barr virus (EBV) is a human gamma herpes virus that infects B cells and induces their transformation into immortalized lymphoblasts that can grow as cell lines (LCLs) in vitro. EBNA-3 is a member of the EBNA-3-protein family that can regulate transcription of cellular and viral genes. The identification of EBNA-3 cellular partners and a study of its influence on cellular pathways are important for understanding the transforming action of the virus.

View Article and Find Full Text PDF

Human Sin1 (SAPK-interacting protein 1) is a member of a conserved family of orthologous proteins that have an essential role in signal transduction in yeast and Dictyostelium. This study demonstrates that most Sin1 orthologues contain both a Raf-like Ras-binding domain (RBD) and a pleckstrin homology (PH) domain. These domains are functional in the human Sin1 protein, with the PH domain involved in lipid and membrane binding by Sin1, and the RBD able to bind activated H-and K-Ras.

View Article and Find Full Text PDF

Background And Purpose: Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting.

Materials And Methods: Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls.

View Article and Find Full Text PDF

The Epstein-Barr nuclear antigen 3A (EBNA3A) is one of only six viral proteins essential for Epstein-Barr virus-induced transformation of primary human B cells in vitro. Viral proteins such as EBNA3A are able to interact with cellular proteins, manipulating various biochemical and signalling pathways to initiate and maintain the transformed state of infected cells. EBNA3A has been reported to have one nuclear-localization signal and is targeted to the nucleus during transformation, where it associates with components of the nuclear matrix.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that participates in at least two distinct multiprotein complexes, mTORC1 and mTORC2 . These complexes play important roles in the regulation of cell growth, proliferation, survival, and metabolism. mTORC2 is a hydrophobic motif kinase for the cell-survival protein Akt/PKB and, here, we identify mSin1 as a component of mTORC2 but not mTORC1.

View Article and Find Full Text PDF