Publications by authors named "T B Iljina"

The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the gene from carrot ( L.

View Article and Find Full Text PDF

The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.).

View Article and Find Full Text PDF

The product specificity and mechanistic peculiarities of two allene oxide synthases, tomato LeAOS3 (CYP74C3) and maize ZmAOS (CYP74A19), were studied. Enzymes were vortexed with linoleic acid 9-hydroperoxide in a hexane-water biphasic system (20-60 s, 0 °C). Synthesized allene oxide (9,10-epoxy-10,12-octadecadienoic acid; 9,10-EOD) was trapped with ethanol.

View Article and Find Full Text PDF

The genome of the neotropical fruit bat was recently sequenced, revealing an unexpected gene encoding a plant-like protein, CYP74C44, which shares ca. 90% sequence identity with the putative CYP74C of . The preparation and properties of the recombinant CYP74C44 are described in the present work.

View Article and Find Full Text PDF

Divinyl ether synthases (DESs) are the enzymes occurring in numerous plant species and catalysing the dehydration of fatty acid hydroperoxides to divinyl ether oxylipins, playing self-defensive and antipathogenic roles in plants. Previously, the DES activities and divinyl ethers were detected in some monocotyledonous plants, including the asparagus (Asparagus officinalis L.).

View Article and Find Full Text PDF