One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration.
View Article and Find Full Text PDFThe latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across diverse clades. Recognized for well over a century, the causal mechanisms for LDGs remain disputed, in part because numerous putative drivers simultaneously covary with latitude. The past provides the opportunity to disentangle LDG mechanisms because the relationships among biodiversity, latitude and possible causal factors have varied over time.
View Article and Find Full Text PDFPlutonium (Pu) has been used as a mid-twentieth century time-marker in various geological archives as a result of atmospheric nuclear tests mainly conducted in 1950s. Advancement of analytical techniques allows us to measure Pu and Pu more accurately and can thereby reconstruct the Pacific Pu signal that originated from the former Pacific Proving Grounds (PPG) in the Marshall Islands. Here, we propose a novel method that couples annual banded reef building corals and nearshore anoxic marine sediments to provide a marker to precisely determine the start of the nuclear era which is known as a part of the Anthropocene.
View Article and Find Full Text PDFThe primary Antarctic contribution to modern sea-level rise is glacial discharge from the Amundsen Sea sector of the West Antarctic Ice Sheet. The main processes responsible for ice mass loss include: (1) ocean-driven melting of ice shelves by upwelling of warm water onto the continental shelf; and (2) atmospheric-driven surface melting of glaciers along the Antarctic coast. Understanding the relative influence of these processes on glacial stability is imperative to predicting sea-level rise.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022