The mechanisms by which organisms recognize the 'self' from the 'non-self' remain poorly understood. Moreover, the capability of transplanted tissue to functionally integrate is unclear in many organisms. Here, we report that two injured Mnemiopsis leidyi individuals, a species of planktonic animals known as comb jellies or ctenophores, are capable of rapidly fusing into a single entity in which some physiological functions are integrated.
View Article and Find Full Text PDFHuman generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones.
View Article and Find Full Text PDFInner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other.
View Article and Find Full Text PDFWound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood.
View Article and Find Full Text PDFp53 is a key component of a signaling network that protects cells against various stresses. As excess p53 is detrimental to cells, its levels are tightly controlled by several mechanisms. The E3 ubiquitin ligase Mdm2 is a major negative regulator of p53.
View Article and Find Full Text PDF