Front Cell Dev Biol
September 2021
Chromosomal instability, the most frequent form of plasticity in cancer cells, often proceeds through the formation of chromosome bridges. Despite the importance of these bridges in tumor initiation and progression, debate remains over how and when they are resolved. In this study, we investigated the behavior and properties of chromosome bridges to gain insight into the potential mechanisms underlying bridge-induced genome instability.
View Article and Find Full Text PDFThe nuclear envelope surrounds the eukaryotic genome and, through the nuclear pore complexes, regulates transport in and out of the nucleus. Correct nucleo-cytoplasm compartmentations are essential for nuclear functions such as DNA replication or repair. During metazoan mitosis, the nuclear envelope disintegrates to allow the segregation of the two copies of DNA between daughter cells.
View Article and Find Full Text PDFDNA repair mechanisms play a crucial role in maintaining genome integrity. However, the increased frequency of DNA double-strand breaks (DSBs) and genome rearrangements in aged individuals suggests an age-associated DNA repair deficiency. Previous work from our group revealed a delayed firing of the DNA damage response in human mammary epithelial cells (HMECs) from aged donors.
View Article and Find Full Text PDFTumorigenesis is a multi-step process in which cells acquire capabilities that allow their growth, survival, and dissemination under hostile conditions. Different tests seek to identify and quantify these hallmarks of cancerous cells; however, they often focus on a single aspect of cellular transformation and, in fact, multiple tests are required for their proper characterization. The purpose of this work is to provide researchers with a set of tools to assess cellular transformation in vitro from a broad perspective, thereby making it possible to draw sound conclusions.
View Article and Find Full Text PDFAging is associated with changes in gene expression levels that affect cellular functions and predispose to age-related diseases. The use of candidate genes whose expression remains stable during aging is required to correctly address the age-associated variations in expression levels. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a powerful approach for sensitive gene expression analysis.
View Article and Find Full Text PDF