Background: Online dose calculations before the delivery of radiation treatments have applications in dose delivery verification, online adaptation of treatment plans, and simulation-free treatment planning. While dose calculations by directly utilizing CBCT images are desired, dosimetric accuracy can be compromised due to relatively lower HU accuracy in CBCT images.
Purpose: In this work, we propose a novel CBCT imaging pipeline to enhance the accuracy of CBCT-based dose calculations in the pelvis region.
Online dose calculations before radiation treatment have applications in dose delivery verification, plan adaptation, and treatment planning. We propose a novel CBCT imaging pipeline to enhance accuracy. Our approach aims to improve HU accuracy in CBCT images for more precise dose calculations.
View Article and Find Full Text PDFPurpose: We have been investigating two-dimensional (2D) antiscatter grids (2D ASGs) to reduce scatter fluence and improve image quality in cone beam computed tomography (CBCT). In this work, two different aspects of 2D ASGs, their scatter rejection and correction capability, were investigated in CBCT experiments. To correct residual scatter transmitted through the 2D ASG, it was used as a scatter measurement device with a novel method: grid-based scatter sampling.
View Article and Find Full Text PDFTo suppress scatter in cone beam computed tomography (CBCT), two-dimensional antiscatter grids (2D grid) have been recently proposed. In this work, we developed several grid prototypes with higher grid ratios and smaller grid pitches than previous designs, and quantified their primary and scatter transmission properties in the context of CBCT for radiation therapy. Three focused 2D grid prototypes were developed with grid ratios at 12 and 16, and grid pitches at 2 and 3 mm.
View Article and Find Full Text PDFPurpose: Two-dimensional antiscatter grids (2DASG) for cone beam computed tomography (CBCT) is a new area of research to reduce scatter intensity, and consequently improve CBCT image quality. One of the challenges in implementation of 2DASGs is their septa shadows that are impinged on the projections. If these artifacts are not corrected, they may lead to ring artifacts in CBCT images.
View Article and Find Full Text PDF