Machine-learned potentials (MLPs) have exhibited remarkable accuracy, yet the lack of general-purpose MLPs for a broad spectrum of elements and their alloys limits their applicability. Here, we present a promising approach for constructing a unified general-purpose MLP for numerous elements, demonstrated through a model (UNEP-v1) for 16 elemental metals and their alloys. To achieve a complete representation of the chemical space, we show, via principal component analysis and diverse test datasets, that employing one-component and two-component systems suffices.
View Article and Find Full Text PDFWe examine the interactions between polyelectrolytes (PEs) and uncharged substrates under conditions corresponding to a dielectric discontinuity between the aqueous solution and the substrate. To this end, we vary the relevant system characteristics, in particular the substrate dielectric constant ɛs under different salt conditions. We employ coarse-grained molecular dynamics simulations with rodlike PEs in salt solutions with explicit ions and implicit water solvent with dielectric constant ɛw = 80.
View Article and Find Full Text PDFRestrictions of cross-border mobility are typically used to prevent an emerging disease from entering a country in order to slow down its spread. However, such interventions can come with a significant societal cost and should thus be based on careful analysis and quantitative understanding on their effects. To this end, we model the influence of cross-border mobility on the spread of COVID-19 during 2020 in the neighbouring Nordic countries of Denmark, Finland, Norway and Sweden.
View Article and Find Full Text PDFElectromagnetically propelled helical nanoswimmers offer great potential for nanorobotic applications. Here, the effect of confinement on their propulsion is characterized using lattice-Boltzmann simulations. Two principal mechanisms give rise to their forward motion under confinement: (i) pure swimming and (ii) the thrust created by the differential pressure due to confinement.
View Article and Find Full Text PDFIt is well established that when multivalent counterions or salts are added to a solution of highly charged polyelectrolytes (PEs), correlation effects can cause charge inversion of the PE, leading to electrophoretic mobility (EM) reversal. In this work, we use coarse-grained molecular-dynamics simulations to unravel the less understood effect of coion valency on EM reversal for rigid DNA-like PEs. We find that EM reversal induced by multivalent counterions is suppressed with increasing coion valency in the salt added and eventually vanishes.
View Article and Find Full Text PDF