Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.
View Article and Find Full Text PDFBackground: Ireland's COVID-19 response combined extensive SARS-CoV-2 testing to estimate incidence, with whole genome sequencing (WGS) for genome surveillance. As an island with two political jurisdictions-Northern Ireland (NI) and Republic of Ireland (RoI)-and access to detailed passenger travel data, Ireland provides a unique setting to study virus introductions and evaluate public health measures. Using a substantial Irish genomic dataset alongside global data from GISAID, this study aimed to trace the introduction and spread of SARS-CoV-2 across the island.
View Article and Find Full Text PDFAims: This study aimed to develop a new bioinformatic approach for the identification of novel antimicrobial peptides (AMPs), which did not depend on sequence similarity to known AMPs held within databases, but on structural mimicry of another antimicrobial compound, in this case an ultrashort, synthetic, cationic lipopeptide (C12-OOWW-NH2).
Methods And Results: When applied to a collection of metagenomic datasets, our outlined bioinformatic method successfully identified several short (8-10aa) functional AMPs, the activity of which was verified via disk diffusion and minimum inhibitory concentration assays against a panel of 12 bacterial strains. Some peptides had activity comparable to, or in some cases, greater than, those from published studies that identified AMPs using more conventional methods.