Publications by authors named "T A Simonyan"

Background: Modular (universal) CAR T-platforms were developed to combat the limitations of traditional CAR-T therapy, allowing for multiple targeting of tumor-associated antigens and the ability to control CAR-T cell activity. The modular CAR-T platform consists of a universal receptor (signaling module) that recognizes an adapter molecule on the soluble module, which is responsible for antigen recognition. Multiple platforms have been developed over the last 12 years, and some of them have entered the clinical trial phase.

View Article and Find Full Text PDF

The calcium cation is a crucial signaling molecule involved in numerous cellular pathways. Beyond its role as a messenger or modulator in intracellular cascades, calcium's function in excitable cells, including nerve impulse transmission, is remarkable. The central role of calcium in nervous activity has driven the rapid development of fluorescent techniques for monitoring this cation in living cells.

View Article and Find Full Text PDF

Roughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine.

View Article and Find Full Text PDF

A significant number of genetically encoded indicators based on fluorescent proteins that allow detecting changes in various parameters: membrane potential shift, pH, concentrations of hydrogen peroxide, lactate, pyruvate, NAD+/NADH, ATP, calcium cations, etc. have been created. Some of them (for example, indicators of calcium cations and hydrogen peroxide) are successfully used by numerous groups of researchers in experiments in vivo.

View Article and Find Full Text PDF

The real-time monitoring of the intracellular pH in live cells with high precision represents an important methodological challenge. Although genetically encoded fluorescent indicators can be considered as a probe of choice for such measurements, they are hindered mostly by the inability to determine an absolute pH value and/or a narrow dynamic range of the signal, making them inefficient for recording the small pH changes that typically occur within cellular organelles. Here, we study the pH sensitivity of a green-fluorescence-protein (GFP)-based emitter (EGFP-Y145L/S205V) with the alkaline-shifted chromophore's pKa and demonstrate that, in the pH range of 7.

View Article and Find Full Text PDF