Publications by authors named "T A Shubina"

A single nanotube synthesized from a transition metal dichalcogenide (TMDC) exhibits strong exciton resonances and, in addition, can support optical whispering gallery modes. This combination is promising for observing exciton-polaritons without an external cavity. However, traditional energy-momentum-resolved detection methods are unsuitable for this tiny object.

View Article and Find Full Text PDF

The ability to emit narrow exciton lines, preferably with a clearly defined polarization, is one of the key conditions for the use of nanostructures based on III-VI monochalcogenides and other layered crystals in quantum technology to create non-classical light. Currently, the main method of their formation is exfoliation followed by strain and defect engineering. A factor limiting the use of epitaxy is the presence of different phases in the grown films.

View Article and Find Full Text PDF

GaN/AlN heterostructures with thicknesses of one monolayer (ML) are currently considered to be the most promising material for creating UVC light-emitting devices. A unique functional property of these atomically thin quantum wells (QWs) is their ability to maintain stable excitons, resulting in a particularly high radiation yield at room temperature. However, the intrinsic properties of these excitons are substantially masked by the inhomogeneous broadening caused, in particular, by fluctuations in the QWs' thicknesses.

View Article and Find Full Text PDF

This article describes GaN/AlN heterostructures for ultraviolet-C (UVC) emitters with multiple (up to 400 periods) two-dimensional (2D)-quantum disk/quantum well structures with the same GaN nominal thicknesses of 1.5 and 16 ML-thick AlN barrier layers, which were grown by plasma-assisted molecular-beam epitaxy in a wide range of gallium and activated nitrogen flux ratios (Ga/N*) on -sapphire substrates. An increase in the Ga/N* ratio from 1.

View Article and Find Full Text PDF
Article Synopsis
  • Single photon sources using semiconductor quantum dots are key elements in advancing optical quantum computing and cryptography, often utilizing Bragg resonators for emission control.
  • The challenge of fabricating complex periodic structures can be addressed by coupling these quantum dots with resonant nanoclusters made of high-index dielectric materials.
  • Experiments show that using magnetic Mie-type resonance in GaAs nanopillar oligomers with InAs quantum dots significantly enhances photon emission efficiency—up to 40 times compared to unstructured materials—indicating promising potential for developing nanoscale single-photon sources.
View Article and Find Full Text PDF