Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors (mPRs) of adiponectin and progestin receptor families. The effect of progesterone on the cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others.
View Article and Find Full Text PDFProgesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02).
View Article and Find Full Text PDFProgesterone modulates many processes in the body, acting through nuclear receptors (nPR) in various organs and tissues. However, a number of effects are mediated by membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ (PAQR) receptor family. These receptors are found in most tissues and immune cells.
View Article and Find Full Text PDFProgesterone (P4) and its analogues regulate various reproductive processes, such as ovulation, implantation, pregnancy maintenance and delivery. In these processes, an important role is played by the immune cells recruited to the female reproductive organs and tissues, where they are exposed to the action of P4. Progestins regulate cellular processes, acting through nuclear steroid receptors (nSRs), membrane P4 receptors (mPRs), and through the sensors.
View Article and Find Full Text PDFIdentification of progesterone selective agonists and antagonists that act through one of the nuclear progesterone receptor isoforms is of particular importance for the development of tissue-specific drugs in gynecology and anticancer therapy. Fourteen pregna-D'- and pregna-D'-pentarane progesterone derivatives with 16α,17α-cycloalkane groups and two progesterone 3-deoxyderivatives were examined for their ability to regulate transcriptional activity of human nuclear progesterone receptor isoform B (nPR-B) expressed in Saccharomyces cerevisiae yeast. Transcriptional activity of nPR-B was measured from the expression of the β-galactosidase reporter gene with a hormone-responsible element in the promoter.
View Article and Find Full Text PDF