Publications by authors named "T A Sergeyeva"

A handheld smartphone-compatible molecularly imprinted polymer (MIP)-based sensor was developed for the analysis of bisphenol A (BPA) in wastewater samples. Sensing elements based on ethylene glycol methacrylate phosphate (EGMP)-containing MIP films were designed and optimized using molecular dynamics simulations. The highly porous MIP films were synthesized via in situ polymerization, employing a fragment-based approach.

View Article and Find Full Text PDF

Polymer-based dressings deriving from natural biomaterials have advantages such as nontoxicity, biocompatibility, and mechanical stability, which are essential for efficient wound healing and microbial infection diagnostics. Here, we designed a prototype of an intelligent hydrogel dressing on the base of bacterial cellulose (BC) for monitoring wound microbial infection due to the uploaded natural pH dye-sensor, anthocyanins (ANC) of elderberry fruit ( L.).

View Article and Find Full Text PDF

A novel enhanced fluorescent sensor system for zearalenone (ZON) determination in flour samples is presented. The ZON-selective molecularly imprinted polymer (MIP) films were developed with a computational modelling method and synthesised with cyclododecyl-2,4-dihydroxybenzoate as a "dummy" template and ethylene glycol methacrylate phosphate as a functional monomer acted as the selective recognition elements for ZON fluorescence detection. Spherical silver nanoparticles (AgNPs) were embedded in the MIP films' structure to enhance the sensor sensitivity.

View Article and Find Full Text PDF

The paper is a self-review of works on development of new approaches to formation of mimics of receptor and catalytic sites of biological macromolecules in the structure of highly cross-linked polymer membranes and thin films. The general strategy for formation of the binding sites in molecularly imprinted polymer (MIP) membranes and thin films was described. A selective recognition of a number of food toxins, endocrine disruptors and metabolites is based on the results of computational modeling data for the prediction and optimization of their structure.

View Article and Find Full Text PDF

We demonstrate a novel sensor platform with enhanced sensitivity and selectivity for detecting aflatoxin B1 - a common food toxin in cereals. The approach is based on a molecularly imprinted polymer film that provides selective binding of the aflatoxin B1 and fluorescence signal from the analyte molecule enhanced by the local electric field induced in close proximity to the surface of a silver nanoparticle excited at the localized surface plasmon resonance (LSPR) wavelength. Molecularly imprinted polymers (MIPs) with supramolecular aflatoxin-selective receptor sites and embedded spherical silver nanoparticles (with diameters 30-70 nm, the LSPR band 407 nm) were prepared in the form of a thin polymer film on the surface of a glass slide using polymerization.

View Article and Find Full Text PDF