Design, synthesis, and biological evaluation of pyridazine-based, 4-bicyclic heteroaryl-piperidine derivatives as potent stearoyl-CoA desaturase-1 (SCD1) inhibitors are described. In a chronic study of selected analog (3e) in Zucker fa/fa (ZF) rat, dose-dependent decrease of body weight gain and plasma fatty acid desaturation index (DI) in both C16 and C18 are also demonstrated. The results indicate that the plasma fatty acid DI may serve as an indicator for direct target engagement and biomarker for SCD1 inhibition.
View Article and Find Full Text PDFThe asymmetric synthesis of 3,4-dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluoromethoxy)phenyl]-alpha-(trifluoromethyl)-1(2H)-quinolineethanol (compound 11), a cholesteryl ester transfer protein inhibitor, is accomplished. The asymmetric center is established via the chiral reduction of ketone 4 employing Corey's (R)-Me CBS oxazaborolidine reagent. The tetrahydroquinoline core of the molecule is established via a Cu-mediated intramolecular amination reaction.
View Article and Find Full Text PDFTetrahydroquinoline A is a potent inhibitor of the cholesterol ester transfer protein (CETP), a target for the treatment of low HDL-C and atherosclerosis. Low HDL-C has been identified as a key risk factor for cardiovascular disease in addition to high LDL-C, the target of the statin drugs. Tetrahydroquinoline A inhibits partially purified CETP with an IC(50) of 39nM.
View Article and Find Full Text PDFWith the goal of identifying a CETP inhibitor with high in vitro potency and optimal in vivo efficacy, a conformationally constrained molecule was designed based on the highly potent and flexible 13. The synthetic chemistry efforts led to the discovery of the potent and selective 12. In high-fat fed hamsters, human CETP transgenic mice, and cynomolgus monkeys, the in vivo efficacy of 12 for raising HDL-C was demonstrated to be comparable to torcetrapib.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2005
Efforts directed to identifying potent HIV protease inhibitors (PI) have yielded a class of compounds that are not only very active against wild-type (NL4-3) HIV virus but also very potent against a panel of PI-resistant viral isolates. Chemistry and biology are described.
View Article and Find Full Text PDF