Publications by authors named "T A Quine"

The extent to which soil erosion is a net source or sink of carbon globally remains unresolved but has the potential to play a key role in determining the magnitude of CO emissions from land-use change in rapidly eroding landscapes. The effects of soil erosion on carbon storage in low-input agricultural systems, in acknowledged global soil erosion hotspots in developing countries, are especially poorly understood. Working in one such hotspot, the Indian Himalaya, we measured and modelled field-scale soil budgets, to quantify erosion-induced changes in soil carbon storage.

View Article and Find Full Text PDF

Due to the influence of climate change and extensive grazing, a large proportion of steppe grassland has been degraded worldwide. The Chinese government initiated a series of grassland restoration programs to reverse the degradation. However, the limiting factors and the restoration potential remain unknown.

View Article and Find Full Text PDF

Increasing temperature over recent decades is expected to positively impact tree growth in humid regions. However, high stand density could increase the negative effects of warming-induced drought through inter-tree competition. How neighborhood competition impacts tree growth responding to climate change remains unclear.

View Article and Find Full Text PDF

Understanding the impacts of climate change and human activities on vegetation is of great significance to the sustainable development of terrestrial ecosystems. However, most studies focused on the overall impact over a period and rarely examined the time-lag effect of vegetation's response to climatic factors when exploring the driving mechanisms of vegetation dynamics. In this study, we identified key areas driven by either positive or negative human activities and climate change.

View Article and Find Full Text PDF

Carbon sequestration is a key soil function, and an increase in soil organic carbon (SOC) is an indicator of ecosystem recovery because it underpins other ecosystem services by acting as a substrate for the soil microbial community. The soil microbial community constitutes the active pool of SOC, and its necromass (microbial residue carbon, MRC) contributes strongly to the stable SOC pool. Therefore, we propose that the potential for restoration of degraded karst ecosystems lies in the abundance of soil microbial community and the persistence of its necromass, and may be measured by changes in its contribution to the active and stable SOC pools during recovery.

View Article and Find Full Text PDF