Publications by authors named "T A Ostler"

Replacing cells lost during the progression of neurodegenerative disorders holds potential as a therapeutic strategy. Unfortunately, the majority of cells die post-transplantation, which creates logistical and biological challenges for cell therapy approaches. The cause of cell death is likely to be multifactorial in nature but has previously been correlated with hypoxia in the graft core.

View Article and Find Full Text PDF

Background And Objective: Conventional (100 ms) pan-retinal photocoagulation (PRP) laser burns are larger than short-pulse (10 ms to 20 ms) PRP burns. This study investigates the effect of PRP burns of different sizes on retinal oxygenation.

Method: A mathematical model using COMSOL Multiphysics 6 was used to create a three-dimensional abstraction of the coupled biology of the choroid, photoreceptor, and retinal tissues.

View Article and Find Full Text PDF

It is widely known that antiferromagnets (AFMs) display a high frequency response in the terahertz (THz) range, which opens up the possibility for ultrafast control of their magnetization for next generation data storage and processing applications. However, because the magnetization of the different sublattices cancel, their state is notoriously difficult to read. One way to overcome this is to couple AFMs to ferromagnets-whose state is trivially read via magneto-resistance sensors.

View Article and Find Full Text PDF

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection. Although TMMs have been observed in skyrmion lattices, spinor Bose-Einstein condensates, chiral magnets, vortex rings and vortex cores, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature.

View Article and Find Full Text PDF