Publications by authors named "T A MIKHAILOVA"

We demonstrate optical nonthermal excitation of exchange dominated spin waves of different orders in a magnetophotonic crystal. The magnetophotonic structure consists of a thin magnetic film and a Bragg stack of nonmagnetic layers to provide a proper nonuniform interference pattern of the inverse Faraday effect induced by light in the magnetic layer. We found a phenomenon of the pronounced phase slippage of the inverse Faraday effect distribution when the pump wavelength is within the photonic band gap of the structure.

View Article and Find Full Text PDF

In excited centrosymmetric donor-acceptor triads of type A-D-A or D-A-D, symmetry breaking charge transfer (SBCT) in polar media has been explored for a few decades. SBCT is accompanied by significant reorganization of the electronic structure of the molecule, which leads to a change in the fluorescence transition dipole moment (TDM). Previously, experiments revealed a 20%-30% reduction in TDM, which occurs on the timescale of SBCT.

View Article and Find Full Text PDF

The Ni-PANI@GO composite electrode was fabricated via cost effective electrodeposition technique. According to the XRD, FTIR, Raman, SEM, and XPS analyses revealed that the nickel doped PANI@GO composite has been fabricated on the surface of the nickel foam. Addition of nickel significantly enhanced interaction between graphene with PANI leading to higher degree of polyaniline doping though imine groups.

View Article and Find Full Text PDF

The effect of a locally excited state on charge transfer symmetry breaking (SBCT) in excited quadrupolar molecules in solutions has been studied. The interaction of a locally excited state and two zwitterionic states is found to either increase or decrease the degree of SBCT depending on the molecular parameters. A strategy on how to adjust the molecular parameters to control the extent of SBCT is presented.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a complex neurodegenerative condition leading to cognitive decline, personality changes, and behavioral issues, making it difficult to treat due to the activation of toxic brain pathways.
  • Current treatments have limited effectiveness and often cause side effects, highlighting the potential of early intervention to slow disease progression.
  • Curcumin, a natural compound with anti-inflammatory and antioxidant properties, shows promise for AD treatment by protecting brain cells and may work through epigenetic mechanisms, warranting further research into its therapeutic benefits.
View Article and Find Full Text PDF