Tuberculosis is one of the deadliest infectious diseases and continues to be a major health risk in many parts of the world. Even today, the century-old Bacillus Calmette-Guerin (BCG) vaccine is the only formulation on the market and is ineffective for several sections of the global population responsible for transmission. In the search for antigens that can mount a robust immune response, we have reported the recombinant expression and purification of two novel membrane proteins, the Cation transporter protein V (CtpV) and the Mycobacterial copper transporter B (MctB) present on the membrane surface of .
View Article and Find Full Text PDFA first-in-class vaccine adjuvant delivery system, Mn-ZIF, is developed by incorporating manganese (Mn) into the zinc-containing zeolitic-imidazolate framework-8 (ZIF-8). The mixed metal approach, which allowed for tunable Mn doping, is made possible by including a mild reducing agent in the reaction mixture. This approach allows up to 50% Mn, with the remaining 50% Zn within the ZIF.
View Article and Find Full Text PDFVaccines are one of the greatest human achievements in public health, as they help prevent the spread of diseases, reduce illness and death rates, saving thousands of lives with few side effects. Traditional vaccine development is centered around using live attenuated or inactivated pathogens, which is expensive and has resulted in vaccine-associated illnesses. Advancements have led to the development of safer subunit vaccines, which contain recombinant proteins isolated from pathogens.
View Article and Find Full Text PDFThe immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development.
View Article and Find Full Text PDFVaccines have saved countless lives by preventing and even irradicating infectious diseases. Commonly used subunit vaccines comprising one or multiple recombinant proteins isolated from a pathogen demonstrate a better safety profile than live or attenuated vaccines. However, the immunogenicity of these vaccines is weak, and therefore, subunit vaccines require a series of doses to achieve sufficient immunity against the pathogen.
View Article and Find Full Text PDF