The overall survival of a plant depends on the development, growth, and functioning of the roots. Root development and growth are not only genetically programmed but are constantly influenced by environmental factors, with the roots adapting to such changes. The peptide AEDL (alanine-glutamine acid-asparagine acid-leucine) at a concentration of 10 M had an elongating effect on the root cells of seedlings.
View Article and Find Full Text PDFVarious abiotic stresses cause the appearance of reactive oxygen species (ROS) in plant cells, which seriously damage the cellular structures. The engineering of transgenic plants with higher production of ROS-scavenging enzyme in plant cells could protect the integrity of such a fine intracellular structure as the cytoskeleton and each cellular compartment. We analyzed the morphological changes in root tip cells caused by the application of iso-osmotic NaCl and NaSO solutions to tomato plants harboring an introduced superoxide dismutase gene.
View Article and Find Full Text PDFExogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10-10 M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature.
View Article and Find Full Text PDF