Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production.
View Article and Find Full Text PDFTissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis.
View Article and Find Full Text PDFHematopoiesis is a tightly regulated process orchestrated by cell-intrinsic and cell-extrinsic cues. Over the past several decades, much effort has been focused on understanding how these cues regulate hematopoietic stem cell (HSC) function. Many endogenous key regulators of hematopoiesis have been identified and extensively characterized.
View Article and Find Full Text PDFRespiratory diseases are a leading cause of death worldwide, with vulnerability to disease varying greatly between individuals. The reasons underlying disease susceptibility are unknown, but there is often a variable immune response in lungs often. Recently, we identified a surprising novel role for the interleukin 7 receptor (IL7R), a primarily lymphoid-associated regulator, in fetal-specified, lung-resident macrophage development.
View Article and Find Full Text PDF