Publications by authors named "T A Carlstrom"

Recent upgrades providing two-dimensional divertor Thomson scattering (DTS-2D) measurements of Te and ne during a DIII-D plasma shot and a thorough description of system components and their functionality are presented. This system expands the capabilities of the existing single divertor Floor measurement location by introducing seven additional laser beam path options in the poloidal plane, spanning major radii from 1.062 to 1.

View Article and Find Full Text PDF

Collective Thomson scattering (CTS) is a diagnostic method that measures the ion velocity distribution of a plasma. CO laser CTS measurements are challenging because of the inherently small Doppler broadening and scattering signals that are difficult to detect. We implemented a heterodyne detection scheme to measure spectrum changes of less than a GHz.

View Article and Find Full Text PDF

A full-scale ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been installed and tested on the DIII-D tokamak. In the TIP prototype, a two-color interferometry measurement of line-integrated density is carried out at 10.59 m and 5.

View Article and Find Full Text PDF

Translatable in-vessel mirrors have enabled the DIII-D Thomson scattering system to diagnose the divertor plasma in high triangularity shaped plasmas. Previous divertor Thomson scattering measurements in DIII-D were restricted to spatial locations along a Nd:YAG laser beam that was directed through a vertical port. This only allowed measurements to be made in low triangularity shaped plasmas.

View Article and Find Full Text PDF

In order to improve both the density and particularly the temporal resolution beyond previous dispersion interferometers (DIs), a heterodyne technique based on an acousto-optic (AO) cell has been added to the DI. A 40 MHz drive frequency for the AO cell allows density fluctuation measurements into the MHz range. A CO laser-based heterodyne DI (HDI) installed on DIII-D has demonstrated that the HDI is capable of tracking the density evolution throughout DIII-D discharges, including disruption events and other rapid transient phenomena.

View Article and Find Full Text PDF