Prediction models aim to use available data to predict a health state or outcome that has not yet been observed. Prediction is primarily relevant to clinical practice, but is also used in research, and administration. While prediction modeling involves estimating the relationship between patient factors and outcomes, it is distinct from casual inference.
View Article and Find Full Text PDFAging is associated with sleep-wake disruption, dampening of circadian amplitudes, and a reduced homeostatic sleep response. Aging is also associated with a decline in hypothalamic cell proliferation. We hypothesized that the aging-related decline in cell-proliferation contributes to the dysfunction of preoptic-hypothalamic sleep-wake and circadian systems and consequent sleep-wake disruption.
View Article and Find Full Text PDFSleep in mammals is accompanied by a decrease in core body temperature (CBT). The circadian clock in the hypothalamic suprachiasmatic nucleus regulates daily rhythms in both CBT and arousal states, and these rhythms are normally coupled. Reductions in metabolic heat production resulting from behavioral quiescence and reduced muscle tone along with changes in autonomic nervous system activity and thermoeffector activity contribute to the sleep-related fall in CBT.
View Article and Find Full Text PDFGrowing evidence supports a role for the medullary parafacial zone in non-rapid eye movement (non-REM) sleep regulation. Cell-body specific lesions of the parafacial zone or disruption of its GABAergic/glycinergic transmission causes suppression of non-REM sleep, whereas, targeted activation of parafacial GABAergic/glycinergic neurons reduce sleep latency and increase non-REM sleep amount, bout duration, and cortical electroencephalogram (EEG) slow-wave activity. Parafacial GABAergic/glycinergic neurons also express sleep-associated c-fos immunoreactivity.
View Article and Find Full Text PDFCurr Opin Neurobiol
June 2017
Sleep homeostasis is a fundamental property of vigilance state regulation that is highly conserved across species. Neuronal systems and circuits that underlie sleep homeostasis are not well understood. In Drosophila, a neuronal circuit involving neurons in the ellipsoid body and in the dorsal Fan-shaped body is a candidate for both tracing sleep need during waking and translating it to increased sleep drive and expression.
View Article and Find Full Text PDFUnlabelled: Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2015
Corticotropin releasing factor (CRF) is implicated in sleep and arousal regulation. Exogenous CRF causes sleep suppression that is associated with activation of at least two important arousal systems: pontine noradrenergic and hypothalamic orexin/hypocretin neurons. It is not known whether CRF also impacts sleep-promoting neuronal systems.
View Article and Find Full Text PDFThe preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved.
View Article and Find Full Text PDFNitric oxide (NO) has been implicated in the regulation of sleep. The perifornical-lateral hypothalamic area (PF-LHA) is a key wake-promoting region and contains neurons that are active during behavioral or cortical activation. Recently, we found higher levels of NO metabolites (NOx), an indirect measure of NO levels, in the PF-LHA during prolonged waking (SD).
View Article and Find Full Text PDFMany physiological and molecular processes are strongly rhythmic and profoundly influenced by sleep. The continuing effort of biological, medical, and veterinary science to understand the temporal organization of cellular, physiological, behavioral and cognitive function holds great promise for the improvement of the welfare of animals and human beings. As a result, attending veterinarians and IACUC are often charged with the responsibility of evaluating experiments on such rhythms or the effects of sleep (or its deprivation) in vertebrate animals.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2013
The median preoptic nucleus (MnPN) and the ventrolateral preoptic area (VLPO) are two hypothalamic regions that have been implicated in sleep regulation, and both nuclei contain sleep-active GABAergic neurons. Adenosine is an endogenous sleep regulatory substance, which promotes sleep via A1 and A2A receptors (A2AR). Infusion of A2AR agonist into the lateral ventricle or into the subarachnoid space underlying the rostral basal forebrain (SS-rBF), has been previously shown to increase sleep.
View Article and Find Full Text PDFThe perifornical-lateral hypothalamic area (PF-LHA) is a major wake-promoting structure. It predominantly contains neurons that are active during behavioral and cortical activation. Nitric oxide (NO) is a gaseous neurotransmitter that has been implicated in the regulation of sleep.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress has been associated with the regulation of sleep and wake. We have previously shown that i.c.
View Article and Find Full Text PDFThe ventrolateral division of the periaqueductal gray (vlPAG) and the adjacent deep mesencephalic reticular nucleus have been implicated in the control of sleep. The preoptic hypothalamus, which contains populations of sleep-active neurons, is an important source of afferents to the vlPAG. The perifornical lateral hypothalamus (LH) contains populations of wake-active neurons and also projects strongly to the vlPAG.
View Article and Find Full Text PDFWe examined the effects of eszopiclone (ESZ), a GABA-A receptor agonist in current clinical use as a hypnotic medication, on the activity of subcortical wake- and sleep-active neuronal populations in the rat brain. Sleep-wake states were quantified after i.p.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2011
The present study evaluated the hypothesis that developmental changes in hypothalamic sleep-regulatory neuronal circuits contribute to the maturation of sleep homeostasis in rats during the fourth postnatal week. In a longitudinal study, we quantified electrographic measures of sleep during baseline and in response to sleep deprivation (SD) on postnatal days 21/29 (P21/29) and P22/30 (experiment 1). During 24-h baseline recordings on P21, total sleep time (TST) during the light and dark phases did not differ significantly.
View Article and Find Full Text PDFThe perifornical-lateral hypothalamic area (PF-LHA) is a major wake-promoting structure. It predominantly contains neurons that are active during behavioral and cortical activation. PF-LHA stimulation produces arousal and PF-LHA lesions produce somnolence.
View Article and Find Full Text PDFPurpose Of Review: Regions of the neocortex most strongly activated during waking exhibit increased sleep intensity during subsequent sleep. The novel concept that aspects of sleep homeostasis are determined locally in the cortex contrasts with the established views that global changes in neocortical activity during sleep are achieved through inhibition of ascending arousal systems that originate in the brainstem and hypothalamus.
Recent Findings: Experiments in animals and humans document asymmetries in neocortical electroencephalogram (EEG) slow-wave activity (SWA), a marker of homeostatic sleep need, as a result of functional activity during waking.
Sleep fragmentation (SF) is prevalent in human sleep-related disorders. In rats, sustained SF has a potent suppressive effect on adult hippocampal dentate gyrus (DG) neurogenesis. Adult-generated DG neurons progressively mature over several weeks, and participate in certain hippocampal-dependent cognitive functions.
View Article and Find Full Text PDFThe adult hippocampal dentate gyrus (DG) exhibits cell proliferation and neurogenesis throughout life. We examined the effects of daily administration of eszopiclone (Esz), a commonly used hypnotic drug and gamma-aminobutyric acid (GABA) agonist, compared with vehicle, on DG cell proliferation and neurogenesis, and on sleep-wake patterns. Esz was administered during the usual sleep period of rats, to mimic typical use in humans.
View Article and Find Full Text PDF