Spiking neural networks (SNNs) are subjects of a topic that is gaining more and more interest nowadays. They more closely resemble actual neural networks in the brain than their second-generation counterparts, artificial neural networks (ANNs). SNNs have the potential to be more energy efficient than ANNs on event-driven neuromorphic hardware.
View Article and Find Full Text PDFThe paper describes the architecture of a Spiking Neural Network (SNN) for time waveform analyses using edge computing. The network model was based on the principles of preprocessing signals in the diencephalon and using tonic spiking and inhibition-induced spiking models typical for the thalamus area. The research focused on a significant reduction of the complexity of the SNN algorithm by eliminating most synaptic connections and ensuring zero dispersion of weight values concerning connections between neuron layers.
View Article and Find Full Text PDF