Recent studies support the role of cysteine oxidation in actin cytoskeleton reorganization during cell adhesion. The aim of this study was to explain whether protein disulfide isomerase (PDI) is responsible for the thiol-disulfide rearrangement in the β-actin molecule of adhering cells. First, we showed that PDI forms a disulfide-bonded complex with β-actin with a molecular mass of 110 kDa.
View Article and Find Full Text PDFUnlabelled: The aim of the study is proteomic analysis of the plasma profile in children with recurrent bone fractures. The study involved 16 children: 6 patients with recurrent low-energy fractures and normal bone mass and 10 with osteogenesis imperfecta. In the analysis of the protein profile, the two-dimensional protein electrophoresis was used (Ettan DALT II, Amersham Bioscience).
View Article and Find Full Text PDFRecent evidence supports a role of protein-disulfide isomerase (PDI) in redox-controlled remodeling of the exofacial domains of α(IIb)β(3) in blood platelets. The aim of this study was to explain whether Ero1α can be responsible for extracellular reoxidation of the PDI active site. We showed that Ero1α can be found on platelets and is rapidly recruited to the cell surface in response to platelet agonists.
View Article and Find Full Text PDFA novel affinity purification method for rapid isolation of vitronectin (VN) from human plasma is described. Recently we have used phage display technology to obtain clones expressing peptides with high binding activity for VN. The isolated "strong VN binders" were covalently coupled to CNBr-activated Sepharose.
View Article and Find Full Text PDF