Publications by authors named "Szymkowiak J"

Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech () showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops.

View Article and Find Full Text PDF

The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.

View Article and Find Full Text PDF

The creation of multicomponent materials with desired properties and functions is a challenge of modern materials chemistry. Chiral nematic mesoporous organosilicas have iridescent properties that make them attractive for decoration and sensing. In this paper, we demonstrate the chemical functionalization of chiral nematic mesoporous organosilica films with cyclodextrin.

View Article and Find Full Text PDF

Background And Aims: Both plants and animals display considerable variation in their phe- notypic traits as they grow. This variation helps organisms to adapt to specific challenges at different stages of development. Masting, the variable and synchronized seed production across years by a population of plants, is a common reproductive strategy in perennial plants that can enhance reproductive efficiency through increasing pollination efficiency and decreasing seed predation.

View Article and Find Full Text PDF

Chiral nematic mesoporous organosilica (CNMO) films have unique iridescent properties that make them attractive candidates for decorations, sensing and photonics. However, it has proven difficult to control the colour and porosity of CNMO films. Here, we have explored the addition of a range of biodegradable and eco-friendly additives to tune the helical pitch and, hence, the colour of the CNMO materials.

View Article and Find Full Text PDF

The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage.

View Article and Find Full Text PDF
Article Synopsis
  • Spatial synchrony in seed production of European beech shows stronger alignment during periods of seed scarcity rather than during peak years.
  • High interannual variation in seed production, known as masting, leads to synchronous patterns across large distances, with significant effects on resource availability.
  • The study found that seed scarcity is widespread across populations up to 1800 km apart, while mast peaks are synchronized over distances up to 1000 km, indicating that food shortages can have amplified consequences on ecosystems and climate dynamics.
View Article and Find Full Text PDF

Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure.

View Article and Find Full Text PDF

High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations.

View Article and Find Full Text PDF

Prey species commonly assess predation risk based on acoustic signals, such as predator vocalizations or heterospecific alarm calls. The resulting risk-sensitive decision-making affects not only the behavior and life-history of individual prey, but also has far-reaching ecological consequences for population, community, and ecosystem dynamics. Although auditory risk recognition is ubiquitous in animals, it remains unclear how individuals gain the ability to recognize specific sounds as cues of a threat.

View Article and Find Full Text PDF

Masting (synchronous and interannually variable seed production) is frequently called a reproductive strategy; yet it is unclear whether the reproductive behaviour of individuals has a heritable component. To address this, we used 22 years of annual fruit production data from 110 L. trees to examine the contributions of genetic factors to the reproductive phenotype of individuals, while controlling for environmental variation.

View Article and Find Full Text PDF

Mast seeding is the episodic, massive production of plant seeds synchronized over large areas. The resulting superabundance of seeds represents a resource pulse that can profoundly affect animal populations across trophic levels. Following years of high seed production, the abundance of both seed consumers and their predators increase.

View Article and Find Full Text PDF

Films of cellulose nanocrystals (CNCs) with chiral nematic organization can show vivid iridescence that arises from their hierarchical structure. Unfortunately, the brittleness of the films limits their potential applications. In this paper, we investigate the incorporation of halloysite nanotubes (HNTs) into CNC films to prepare organic-inorganic composite films with enhanced mechanical properties, while preserving the chiral nematic structure and brilliant iridescence.

View Article and Find Full Text PDF

The wood warbler, Phylloscopus sibilatrix (Aves: Passeriformes), is a well-known model organism for studying bird migration, breeding habitat selection and nest predation. The nest acarofauna of this bird species has not been extensively studied so far. To provide a comprehensive report on mite species inhabiting wood warbler nests and to assess infestation parameters (prevalence, intensity, and abundance) for mite species and orders, we collected 45 nests of this bird species in the Wielkopolska National Park in western Poland.

View Article and Find Full Text PDF

Seed production in many plants is characterized by large interannual variation, which is synchronized at subcontinental scales in some species but local in others. The reproductive synchrony affects animal migrations, trophic responses to resource pulses and the planning of management and conservation. Spatial synchrony of reproduction is typically attributed to the Moran effect, but this alone is unable to explain interspecific differences in synchrony.

View Article and Find Full Text PDF

The introduction of urea or thiourea functionality to the macrocycle skeleton represents an alternative way to control conformational dynamics of chiral, polyamines of a figure-shaped periodical structure. Formally highly symmetrical, these macrocycles may adapt diverse conformations, depending on the nature of an amide linker and on a substitution pattern within the aromatic units. The type of heteroatom X in the N-C(═X)-N units present in each vertex of the macrocycle core constitutes the main factor determining the chiroptical properties.

View Article and Find Full Text PDF

Chiral isotrianglimines were synthesized by the [3 + 3] cyclocondensation of (,)-1,2-diaminocyclohexane with C5-substituted isophthalaldehyde derivatives. The substituent's steric and electronic demands and the guest molecules' nature have affected the conformation of individual macrocycles and their propensity to form supramolecular architectures. In the crystal, the formation of a honeycomb-like packing arrangement of the simplest isotrianglimine was promoted by the presence of toluene or -xylene molecules.

View Article and Find Full Text PDF

Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent.

View Article and Find Full Text PDF

DNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used.

View Article and Find Full Text PDF

Annually variable and synchronous seed production by plant populations, or masting, is a widespread reproductive strategy in long-lived plants. Masting is thought to be selectively beneficial because interannual variability and synchrony increase the fitness of plants through economies of scale that decrease the cost of reproduction per surviving offspring. Predator satiation is believed to be a key economy of scale, but whether it can drive phenotypic evolution for masting in plants has been rarely explored.

View Article and Find Full Text PDF

Background And Aims: In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting.

View Article and Find Full Text PDF

Masting-temporally variable seed production with high spatial synchrony-is a pervasive strategy in wind-pollinated trees that is hypothesized to be vulnerable to climate change due to its correlation with variability in abiotic conditions. Recent work suggests that aging may also have strong effects on seed production patterns of trees, but this potential confounding factor has not been considered in previous times series analysis of climate change effects. Using a 54 year dataset for seven dominant species in 17 forests across Poland, we used the proportion of seed-producing trees (PST) to contrast the predictions of the climate change and aging hypotheses in Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Quercus petraea, and Quercus robur.

View Article and Find Full Text PDF

Substituted 2,4- and 4,6-dihydroxyisophthalaldehydes were condensed with optically pure and racemic trans-1,2-diaminocyclohexane to form resorcinarene-like polyimine macrocycles (resorcinsalens), the structure and stoichiometry of which were controlled by the choice of the reaction medium. Particularly, the cyclocondensation reactions were driven by the solubility, tautomerization, or by social self-sorting. The resorcinsalens crystallized as inclusion compounds, in which the guest molecules were situated either in channels or in voids.

View Article and Find Full Text PDF

Synthesis and detailed experimental and theoretical study on new urea and thiourea derivatives of chiral trianglamine are presented. In solution, the urea derivative of the trianglamine adopts cone conformation, whereas a respective thiourea derivative exists in solution predominantly as a partial cone conformer. In the crystalline phase, the thiourea trianglamine derivative adapts partial cone conformation.

View Article and Find Full Text PDF

Readily available chiral trianglimine and their (poly)oxygenated congeners represent a unique class of macrocyclic rigid compounds optimal for testing electronic and vibrational circular dichroism exciton chirality methods. Electronic and vibrational circular dichroism spectra of such trianglimines are strongly affected by polar substituents in macrocycle skeletons. Double substitution by OH groups in each aromatic fragment of the macrocycle causes sign reversal of the exciton couplet in the region of the strongest UV absorption.

View Article and Find Full Text PDF