Publications by authors named "Szyk A"

Article Synopsis
  • Microtubule function is influenced by the "tubulin code," which includes various posttranslational modifications, particularly glutamylation, a common modification where branched glutamate chains are added.
  • Glutamylation is regulated by specific enzymes that add and remove these chains, and maintaining this balance is crucial for cell health; mutations in enzymes can lead to diseases.
  • The study presents detailed structures of the glutamylation eraser enzyme CCP5 bound to microtubules, revealing how it identifies and processes glutamate branches, which is essential for understanding tubulin modification and its role in cellular functions.
View Article and Find Full Text PDF

Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C.

View Article and Find Full Text PDF

Microtubules are non-covalent polymers of αβ-tubulin dimers. Posttranslational processing of the intrinsically disordered C-terminal α-tubulin tail produces detyrosinated and Δ2-tubulin. Although these are widely employed as proxies for stable cellular microtubules, their effect (and of the α-tail) on microtubule dynamics remains uncharacterized.

View Article and Find Full Text PDF

The AAA ATPase katanin severs microtubules. It is critical in cell division, centriole biogenesis, and neuronal morphogenesis. Its mutation causes microcephaly.

View Article and Find Full Text PDF

The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.

View Article and Find Full Text PDF

Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases important for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of known 3D structures for these enzymes, their mechanism of action has remained poorly understood. Here we report the X-ray crystal structure of the monomeric AAA katanin module from Caenorhabditis elegans and cryo-EM reconstructions of the hexamer in two conformations.

View Article and Find Full Text PDF

Microtubules are polymers that cycle stochastically between polymerization and depolymerization, i.e. they exhibit "dynamic instability.

View Article and Find Full Text PDF

Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the β-tubulin tail.

View Article and Find Full Text PDF

Acetylation of α-tubulin Lys40 by tubulin acetyltransferase (TAT) is the only known posttranslational modification in the microtubule lumen. It marks stable microtubules and is required for polarity establishment and directional migration. Here, we elucidate the mechanistic underpinnings for TAT activity and its preference for microtubules with slow turnover.

View Article and Find Full Text PDF

Tubulin partition between soluble and polymeric forms is tightly regulated in cells. Stathmin and tubulin tyrosine ligase (TTL) each form stable complexes with tubulin and inhibit tubulin polymerization. Here we explore the mutual relationship between these proteins in vitro and demonstrate that full-length stathmin and TTL compete for binding to tubulin and fail to make a stable tubulin:stathmin:TTL triple complex in solution.

View Article and Find Full Text PDF

Tubulin acetyltransferase (TAT) acetylates Lys-40 of α-tubulin in the microtubule lumen. TAT is inefficient, and its activity is enhanced when tubulin is incorporated in microtubules. Acetylation is associated with stable microtubules and regulates the binding of microtubule motors and associated proteins.

View Article and Find Full Text PDF

Tubulin tyrosine ligase (TTL) catalyzes the post-translational C-terminal tyrosination of α-tubulin. Tyrosination regulates recruitment of microtubule-interacting proteins. TTL is essential.

View Article and Find Full Text PDF

Nucleolar Essential Protein 1 (Nep1) is required for small subunit (SSU) ribosomal RNA (rRNA) maturation and is mutated in Bowen-Conradi Syndrome. Although yeast (Saccharomyces cerevisiae) Nep1 interacts with a consensus sequence found in three regions of SSU rRNA, the molecular details of the interaction are unknown. Nep1 is a SPOUT RNA methyltransferase, and can catalyze methylation at the N1 of pseudouridine.

View Article and Find Full Text PDF

The ESX-1 secretion system plays a critical role in the virulence of M. tuberculosis and M. marinum, but the precise molecular and cellular mechanisms are not clearly defined.

View Article and Find Full Text PDF

Six alpha-defensins have been found in humans. These small arginine-rich peptides play important roles in various processes related to host defense, being the effectors and regulators of innate immunity as well as enhancers of adoptive immune responses. Four defensins, called neutrophil peptides 1 through 4, are stored primarily in polymorphonuclear leukocytes.

View Article and Find Full Text PDF

ClpP, the proteolytic component of the ATP-dependent ClpAP and ClpXP chaperone/protease complexes, has 14 identical subunits organized in two stacked heptameric rings. The active sites are in an interior aqueous chamber accessible through axial channels. We have determined a 1.

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cells like transcript-1 (TLT-1) is an abundant platelet-specific, type I transmembrane receptor. The extracellular fragment of TLT-1 consists of a single, immunoglobulin-like domain connected to the platelet cell membrane by a linker region called the stalk. Here we present evidence that a soluble fragment of the TLT-1 extracellular domain is found in serum of humans and mice and that an isoform of similar mass is released from platelets following activation with thrombin.

View Article and Find Full Text PDF

Amino acid contributions to protein recognition of naturally modified RNAs are not understood. Circular dichroism spectra and predictive software suggested that peptide tF2 (S1ISPW5GFSGL10 LRWSY15), selected from a phage display library to bind the modified anticodon domain of yeast tRNAPhe (ASL), adopted a beta-sheet structure. Ala residues incorporated at positions Pro4 and Gly6, both predicted to be involved in a turn, did not alter the peptide binding affinity for the ASLPhe, although major changes in the peptide's CD spectra were observed.

View Article and Find Full Text PDF

This report describes the crystal structure of the K(+) channel-blocking toxin, BmBKTx1, isolated recently from the venom of the scorpion Buthus martensi Karsch. This is only the second structure of the short-chain K(+) channel-blocking toxin from scorpion solved by means of X-ray crystallography. Additionally, reductive dimethylation of folded BmBKTx1 employed to induce its crystallization and solution of the structure based on the anomalous signal from the sulfur atoms make this example quite unique.

View Article and Find Full Text PDF

Methylation of RNA and proteins is one of a broad spectrum of post-transcriptional/translational mechanisms of gene expression regulation. Its functional signification is only beginning to be understood. A sensitive capillary electrophoresis mobility shift assay (CEMSA) for qualitative study of the methylation effect on biomolecules interaction is presented.

View Article and Find Full Text PDF

A sensitive capillary electrophoresis mobility shift assay (CEMSA) for qualitative study of the interaction between the trans-activation response element (TAR) and the trans-activator of transcription protein (Tat) has been presented. The human immunodeficiency virus type 1 (HIV-1) Tat promotes elongation of viral mRNAs binding to the TAR. It has been suggested that a single, conserved arginine residue (presumably Arg52) within the arginine-rich region (ARR) of Tat plays the major role for the Tat-TAR recognition.

View Article and Find Full Text PDF

A sensitive capillary electrophoresis mobility shift assay (CEMSA) to analyze RNA/peptide interactions has been developed. Capillary electrophoresis (CE) has been adapted for investigating the interaction between variously methylated 17-nt analogs of the yeast tRNAPhe anticodon stem and loop domain (ASL(Phe)) and 15-amino-acid peptides selected from a random phage display library (RPL). A peptide-concentration-dependent formation of RNA/peptide complex was clearly visible during CEMSA.

View Article and Find Full Text PDF

Background: The study was undertaken to establish the pharmacological basis of the stimulatory activity of galantide (M15) and galanin(1-14)-(a-aminobutyric acid8-[Abu8])scyliorhinin-I [Scy-I] in gastric smooth muscle.

Material/methods: Isotonic contractions of the isolated, longitudinal rat gastric fundus strips were recorded.

Results: Galanin, galanin(1-15)-NH2, M15 and galanin(1-14)-[Abu8]Scy-I elicited concentration-dependent contractions.

View Article and Find Full Text PDF

The contributions of the natural modified nucleosides to RNA identity in protein/RNA interactions are not understood. We had demonstrated that 15 amino acid long peptides could be selected from a random phage display library using the criterion of binding to a modified, rather than unmodified, anticodon domain of yeast tRNA(Phe) (ASL(Phe)). Affinity and specificity of the selected peptides for the modified ASL(Phe) have been characterized by fluorescence spectroscopy of the peptides' tryptophans.

View Article and Find Full Text PDF