Publications by authors named "Szundi I"

The light-gated anion channelrhodopsin GtACR1 is an important optogenetic tool for neuronal silencing. Its photochemistry, including its photointermediates, is poorly understood. The current mechanistic view presumes BR-like kinetics and assigns the open channel to a blue-absorbing L intermediate.

View Article and Find Full Text PDF

Anion channelrhodopsin GtACR1 is a powerful optogenetic tool to inhibit nerve activity. Its kinetic mechanism was interpreted in terms of the bacteriorhodopsin photocycle, and the L intermediate was assigned to the open channel state. Here, we report the results of the comparison between the time dependence of the channel currents and the time evolutions of the K-like and L-like spectral forms.

View Article and Find Full Text PDF

The most effective tested optogenetic tools available for neuronal silencing are the light-gated anion channel proteins found in the cryptophyte alga Guillardia theta (GtACRs). Molecular mechanisms of GtACRs, including the photointermediates responsible for the open channel state, are of great interest for understanding their exceptional conductance. In this study, the photoreactions of GtACR1 and its D234N, A75E, and S97E mutants were investigated using multichannel time-resolved absorption spectroscopy.

View Article and Find Full Text PDF

Styrene-maleic acid (SMA) copolymers solubilize biological membranes to form lipid nanoparticles (SMALPs) that contain membrane proteins surrounded by native lipids, thus enabling the use of a variety of biophysical techniques for structural and functional studies. The question of whether SMALPs provide a truly natural environment or SMA solubilization affects the functional properties of membrane proteins, however, remains open. We address this question by comparing the photoactivation kinetics of rhodopsin, a G-protein-coupled receptor in the disk membranes of rod cells, in native membrane and SMALPs prepared at different molar ratios between SMA(3:1) and rhodopsin.

View Article and Find Full Text PDF

Membrane proteins often require solubilization to study their structure or define the mechanisms underlying their function. In this study, the functional properties of the membrane protein rhodopsin in its native lipid environment were investigated after being solubilized with styrene-maleic acid (SMA) copolymer. The static absorption spectra of rhodopsin before and after the addition of SMA were recorded at room temperature to quantify the amount of membrane protein solubilized.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically targeted membrane protein family. Here, we used the visual receptor rhodopsin as an archetype for understanding membrane lipid influences on conformational changes involved in GPCR activation. Visual rhodopsin was recombined with lipids varying in their degree of acyl chain unsaturation and polar headgroup size using 1-palmitoyl-2-oleoyl-sn-glycero- and 1,2-dioleoyl-sn-glycerophospholipids with phosphocholine (PC) or phosphoethanolamine (PE) substituents.

View Article and Find Full Text PDF

Earlier CO flow-flash experiments on the fully reduced Thermus thermophilus ba (Tt ba) cytochrome oxidase revealed that O binding was slowed down by a factor of 10 in the presence of CO (Szundi et al., 2010, PNAS 107, 21010-21015). The goal of the current study is to explore whether the long apparent lifetime (∼50 ms) of the Cu-CO complex generated upon photolysis of the CO-bound mixed-valence Tt ba (Koutsoupakis et al.

View Article and Find Full Text PDF

Rhodopsin is a G protein-coupled receptor found in the rod outer segments in the retina, which triggers a visual response under dim light conditions. Recently, a study of the late, microsecond-to-millisecond kinetics of photointermediates of the human and bovine rhodopsins in their native membranes revealed a complex, double-square mechanism of rhodopsin activation. In this kinetic scheme, the human rhodopsin exhibited more Schiff base deprotonation than bovine rhodopsin, which could arise from the ∼7% sequence difference between the two proteins, or from the difference between their membrane lipid environments.

View Article and Find Full Text PDF

Knowledge of the role of conserved residues in the ligand channel of heme-copper oxidases is critical for understanding how the protein scaffold modulates the function of these enzymes. In this study, we investigated the role of the conserved valine 236 in the ligand channel of ba cytochrome c oxidase from Thermus thermophilus by mutating the residue to a more polar (V236T), smaller (V236A), or larger (V236I, V236N, V236L, V236M, and V236F) residue. The crystal structures of the mutants were determined, and the effects of the mutations on the rates of CO, O, and NO binding were investigated.

View Article and Find Full Text PDF

Rhodopsin is a G-protein-coupled receptor important for vertebrate vision under dim light conditions. Many studies of the activation mechanism of bovine rhodopsin have been conducted, but there have been relatively few investigations of the human protein. A recent study of the late photointermediates of bovine rhodopsin studies at 15 °C and pH 7.

View Article and Find Full Text PDF

The late intermediates involved in the activation mechanism of bovine rhodopsin are investigated by time-resolved optical absorption spectroscopy. Measurements from 10 μs to 200 ms after photolysis were carried out on membrane suspensions of bovine rhodopsin at a temperature of 15 °C and at pH of 7.3, 8.

View Article and Find Full Text PDF

In the ligand channel of the cytochrome c oxidase from Rhodobacter sphaeroides (Rs aa3 ) W172 and F282 have been proposed to generate a constriction that may slow ligand access to and from the active site. To explore this issue, the tryptophan and phenylalanine residues in Rs aa3 were mutated to the less bulky tyrosine and threonine residues, respectively, which occupy these sites in Thermus thermophilus (Tt) ba3 cytochrome oxidase. The CO photolysis and recombination dynamics of the reduced wild-type Rs aa3 and the W172Y/F282T mutant were investigated using time-resolved optical absorption spectroscopy.

View Article and Find Full Text PDF

Channelrhodopsins, such as the algal phototaxis receptor Platymonas subcordiformis channelrhodopsin-2 (PsChR2), are light-gated cation channels used as optogenetic tools for photocontrol of membrane potential in living cells. Channelrhodopsin (ChR)-mediated photocurrent responses are complex and poorly understood, exhibiting alterations in peak current amplitude, extents and kinetics of inactivation, and kinetics of the recovery of the prestimulus dark current that are sensitive to duration and frequency of photostimuli. From the analysis of time-resolved optical absorption data, presented in the accompanying article, we derived a two-cycle model that describes the photocycles of PsChR2.

View Article and Find Full Text PDF

The photocycle kinetics of Platymonas subcordiformis channelrhodopsin-2 (PsChR2), among the most highly efficient light-gated cation channels and the most blue-shifted channelrhodopsin, was studied by time-resolved absorption spectroscopy in the 340-650-nm range and in the 100-ns to 3-s time window. Global exponential fitting of the time dependence of spectral changes revealed six lifetimes: 0.60 μs, 5.

View Article and Find Full Text PDF

Cytochrome bo₃ ubiquinol oxidase from Escherichia coli catalyzes the reduction of O₂ to water by ubiquinol. The reaction mechanism and the role of ubiquinol continue to be a subject of discussion. In this study, we report a detailed kinetic scheme of the reaction of cytochrome bo₃ with O₂ with steps specific to ubiquinol.

View Article and Find Full Text PDF

The route of O₂to and from the high-spin heme in heme-copper oxidases has generally been believed to emulate that of carbon monoxide (CO). Time-resolved and stationary infrared experiments in our laboratories of the fully reduced CO-bound enzymes, as well as transient optical absorption saturation kinetics studies as a function of CO pressure, have provided strong support for CO binding to CuB⁺ on the pathway to and from the high-spin heme. The presence of CO on CuB⁺ suggests that O₂binding may be compromised in CO flow-flash experiments.

View Article and Find Full Text PDF

Knowing how the protein environment modulates ligand pathways and redox centers in the respiratory heme-copper oxidases is fundamental for understanding the relationship between the structure and function of these enzymes. In this study, we investigated the reactions of O2 and NO with the fully reduced G232V mutant of ba3 cytochrome c oxidase from Thermus thermophilus (Tt ba3) in which a conserved glycine residue in the O2 channel of the enzyme was replaced with a bulkier valine residue. Previous studies of the homologous mutant of Rhodobacter sphaeroides aa3 cytochrome c oxidase suggested that the valine completely blocked the access of O2 to the active site [Salomonsson, L.

View Article and Find Full Text PDF

Knowledge of the structure and dynamics of the ligand channel(s) in heme-copper oxidases is critical for understanding how the protein environment modulates the functions of these enzymes. Using photolabile NO and O(2) carriers, we recently found that NO and O(2) binding in Thermus thermophilus (Tt) ba(3) is ~10 times faster than in the bovine enzyme, indicating that inherent structural differences affect ligand access in these enzymes. Using X-ray crystallography, time-resolved optical absorption measurements, and theoretical calculations, we investigated ligand access in wild-type Tt ba(3) and the mutants, Y133W, T231F, and Y133W/T231F, in which tyrosine and threonine in the O(2) channel of Tt ba(3) are replaced by the corresponding bulkier tryptophan and phenylalanine, respectively, present in the aa(3) enzymes.

View Article and Find Full Text PDF

Cytochrome c oxidase from Rhodobacter sphaeroides is frequently used to model the more complex mitochondrial enzyme. The O(2) reduction in both enzymes is generally described by a unidirectional mechanism involving the sequential formation of the ferrous-oxy complex (compound A), the P(R) state, the oxyferryl F form, and the oxidized state. In this study we investigated the reaction of dioxygen with the wild-type reduced R.

View Article and Find Full Text PDF

Molecular structure and function studies of vertebrate ultraviolet (UV) cone visual pigments are needed to understand the molecular evolution of these photoreceptors, which uniquely contain unprotonated Schiff base linkages between the 11-cis-retinal chromophore and the opsin proteins. In this study, the Siberian hamster ultraviolet cone pigment (SHUV) was expressed and purified in an n-dodecyl-β-D-maltoside suspension for optical characterization. Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were taken for the purified pigment at time delays from 30 ns to 4.

View Article and Find Full Text PDF

The reactions of molecular oxygen (O(2)) and nitric oxide (NO) with reduced Thermus thermophilus (Tt) ba(3) and bovine heart aa(3) were investigated by time-resolved optical absorption spectroscopy to establish possible relationships between the structural diversity of these enzymes and their reaction dynamics. To determine whether the photodissociated carbon monoxide (CO) in the CO flow-flash experiment affects the ligand binding dynamics, we monitored the reactions in the absence and presence of CO using photolabile O(2) and NO complexes. The binding of O(2)/NO to reduced ba(3) in the absence of CO occurs with a second-order rate constant of 1×10(9)M(-1)s(-1).

View Article and Find Full Text PDF

Time-dependent studies of membrane protein function are hindered by extensive light scattering that impedes application of fast optical absorbance methods. Detergent solubilization reduces light scattering but strongly perturbs rhodopsin activation kinetics. Nanodiscs may be a better alternative if they can be shown to be free from the serious kinetic perturbations associated with detergent solubilization.

View Article and Find Full Text PDF

Kinetic studies of heme-copper terminal oxidases using the CO flow-flash method are potentially compromised by the fate of the photodissociated CO. In this time-resolved optical absorption study, we compared the kinetics of dioxygen reduction by ba(3) cytochrome c oxidase from Thermus thermophilus in the absence and presence of CO using a photolabile O(2)-carrier. A novel double-laser excitation is introduced in which dioxygen is generated by photolyzing the O(2)-carrier with a 355 nm laser pulse and the fully reduced CO-bound ba(3) simultaneously with a second 532-nm laser pulse.

View Article and Find Full Text PDF

Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were made at delays from 1 micros to 2 ms after photoexcitation of bovine rhodopsin in hypotonically washed membrane suspensions over a range of temperature from 10 to 35 degrees C. The purpose was to better understand the reversibility of the Lumi I-Lumi II process that immediately precedes Schiff base deprotonation in the activation of rhodopsin under physiological conditions. To prevent artifacts due to rotation of rhodopsin and its photoproducts in the membrane, probe light in the time-resolved absorbance studies was polarized at the magic angle (54.

View Article and Find Full Text PDF

Time-resolved circular dichroism measurements, over a spectral range from 300 to 700 nm, were made at delays of 5, 100, and 500 micros after room-temperature photoexcitation of bovine rhodopsin in a lauryl maltoside suspension. The purpose was to provide more structural information about intermediate states in the activation of rhodopsin and other G protein-coupled receptors. In particular, information was sought about photointermediates that are isochromic or nearly isochromic in their unpolarized absorbance.

View Article and Find Full Text PDF