Endometrial polyps (EPs) are benign overgrowths of the endometrial tissue lining the uterus, often causing abnormal bleeding or infertility. This study analyzed gene expression differences between EPs and adjacent endometrial tissue to elucidate intrinsic abnormalities promoting pathological overgrowth. RNA sequencing of 12 pairs of EPs and the surrounding endometrial tissue from infertile women revealed 322 differentially expressed genes.
View Article and Find Full Text PDFDual-targeting anticancer agents 4-29 are designed by combining the structural features of purine-type microtubule-disrupting compounds and HDAC inhibitors. A library of the conjugate compounds connected by appropriate linkers was synthesized and found to possess HDACs inhibitory activity and render microtubule fragmentation by activating katanin, a microtubule-severing protein. Among various zinc-binding groups, hydroxamic acid shows the highest inhibitory activity of Class I HDACs, which was also reconfirmed by three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore prediction.
View Article and Find Full Text PDFSecondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells.
View Article and Find Full Text PDFChronic heavy alcohol use is associated with lethal arrhythmias. Whether common East Asian-specific aldehyde dehydrogenase deficiency (ALDH2*2) contributes to arrhythmogenesis caused by low level alcohol use remains unclear. Here we show 59 habitual alcohol users carrying ALDH2 rs671 have longer QT interval (corrected) and higher ventricular tachyarrhythmia events compared with 137 ALDH2 wild-type (Wt) habitual alcohol users and 57 alcohol non-users.
View Article and Find Full Text PDFBackground: Ovarian cancer (OC) is the most lethal gynecological cancer due to the recurrence of drug-resistance. Cancer initiating cells (CICs) are proposed to be responsible for the aggressiveness of OC. The rarity and difficulty of in vitro long-term cultivation of CICs challenge the development of CIC-targeting therapeutics.
View Article and Find Full Text PDFBackground: Despite advances in prognosis and treatment of lung adenocarcinoma (LADC), a notable non-small cell lung cancer subtype, patient outcomes are still unsatisfactory. New insight on novel therapeutic strategies for LADC may be gained from a more comprehensive understanding of cancer progression mechanisms. Such strategies could reduce the mortality and morbidity of patients with LADC.
View Article and Find Full Text PDFAldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism is a common genetic variant in Asians that is responsible for defective toxic aldehyde and lipid peroxidation metabolism after alcohol consumption. The extent to which low alcohol consumption may cause atrial substrates to trigger atrial fibrillation (AF) development in users with ALDH2 variants remains to be determined. We prospectively enrolled 249 ethnic Asians, including 56 non-drinkers and 193 habitual drinkers (135 (70%) as ALDH2 wild-type: GG, rs671; 58 (30%) as ALDH2 variants: G/A or A/A, rs671).
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related death worldwide. As well as the identified role of epidermal growth factor receptor (EGFR), its association with driver mutations has improved the therapeutics for patients with lung cancer harboring EGFR mutations. These patients usually display shorter overall survival and a higher tendency to develop distant metastasis compared with those carrying the wild-type EGFR.
View Article and Find Full Text PDFDrug resistance has been a major threat in cancer therapies that necessitates the development of new strategies to overcome this problem. We report here a cell-based high-throughput screen of a library containing two-million molecules for the compounds that inhibit the proliferation of non-small-cell lung cancer (NSCLC). Through the process of phenotypic screening, target deconvolution, and structure-activity relationship (SAR) analysis, a compound of furanonaphthoquinone-based small molecule, AS4583, was identified that exhibited potent activity in tyrosine kinase inhibitor (TKI)-sensitive and TKI-resistant NSCLC cells (IC = 77 nM) and in xenograft mice.
View Article and Find Full Text PDFMetastasis is a predominant cause of cancer death and the major challenge in treating lung adenocarcinoma (LADC). Therefore, exploring new metastasis-related genes and their action mechanisms may provide new insights for developing a new combative approach to treat lung cancer. Previously, our research team discovered that the expression of the inhibitor of DNA binding 4 (Id4) was inversely related to cell invasiveness in LADC cells by cDNA microarray screening.
View Article and Find Full Text PDFAn 8-oxopurine-6-carboxamide compound (1a) was previously identified as an inhibitor of non-small cell lung cancer (NSCLC). In this study, more than 30 purine-6-carboxamide derivatives with variations at the C2, N7, C8, and N9 positions were synthesized to investigate the structure-activity relationship as a basis for the construction of an advanced pharmacophore model. This model suggests that purine-6-hydroxamate and purine-6-amidoxime analogs could form more hydrogen bonds with a target protein to enhance the inhibitory activities against H1975 cells.
View Article and Find Full Text PDFThe Hippo pathway is a conserved signaling pathway originally defined in two decades ago. Deregulation of the Hippo pathway leads to significant overgrowth in phenotypes and ultimately initiation of tumorigenesis in various tissues. The major WW domain proteins in the Hippo pathway are YAP and TAZ, which regulate embryonic development, organ growth, tissue regeneration, stem cell pluripotency, and tumorigenesis.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2019
Background: The Slug-E-cadherin axis plays a critical role in non-small-cell lung cancers (NSCLCs) where aberrant upregulation of Slug promotes cancer metastasis. Now, the post-translational modifications of Slug and their regulation mechanisms still remain unclear in lung cancer. Hence, exploring the protein linkage map of Slug is of great interest for investigating the scenario of how Slug protein is regulated in lung cancer metastasis.
View Article and Find Full Text PDFOrgan development is a sophisticated process of self-organization. However, despite growing understanding of the developmental mechanisms, little is known about how to reactivate them postnatally for regeneration. We found that treatment of adult non-hair fibroblasts with cell-free extract from embryonic skin conferred upon them the competency to regenerate hair follicles.
View Article and Find Full Text PDFIn this contribution, a series of sterically-encumbered coumarin substituted benzimidazole-based N-heterocyclic carbene (NHC) precursors (1-12) and their silver(I)-NHC complexes (13-24) are reported. Molecular structure of NHC precursors 8 and 12 and cationic complexes 15 and 16 was established by single crystal X-ray diffraction method. The silver(I) complexes demonstrated various significant intramolecular agostic-like interactions operating between the metal center and the hydrogen atoms of the substituents alongside a variety of feeble π-π stacking interactions.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related death worldwide. Thus, developing novel therapeutic agents has become critical for lung cancer treatment. In this study, compound AS7128 was selected from a 2-million entry chemical library screening and identified as a candidate drug against non-small cell lung cancer in vitro and in vivo.
View Article and Find Full Text PDFDiabetic cardiomyopathy is a well-recognized complication of diabetes, but its pathophysiology is unclear. We aimed to investigate the mechanisms underlying cardiac dysfunction in an elderly type 2 diabetic (T2DM) mouse model, using membrane proteomic analyses. Elderly mice were fed a high fat diet for 12 weeks to induce T2DM, and myocardial structure and function were assessed by echocardiography.
View Article and Find Full Text PDFAlthough EGFR tyrosine kinase inhibitors (TKIs) have demonstrated good efficacy in non-small-cell lung cancer (NSCLC) patients harboring EGFR mutations, most patients develop intrinsic and acquired resistance. We quantitatively profiled the phosphoproteome and proteome of drug-sensitive and drug-resistant NSCLC cells under gefitinib treatment. The construction of a dose-dependent responsive kinase-substrate network of 1548 phosphoproteins and 3834 proteins revealed CK2-centric modules as the dominant core network for the potential gefitinib resistance-associated proteins.
View Article and Find Full Text PDFMicrotubule targeting agents (MTAs) constitute a class of drugs for cancer treatment. Despite many MTAs have been proven to significantly improve the treatment outcomes of various malignancies, resistance has usually occurred. By selection from a two million entry chemical library based on the efficacy and safety, we identified purine-type compounds that were active against lung small cell lung cancer (NSCLC).
View Article and Find Full Text PDFAim: To determine the frequency of expression of the tumor-associated antigens (TAAs) melanoma-associated antigen A3 (MAGE-A3) and preferentially expressed antigen of melanoma (PRAME) and the rate of EGFR mutations in a Taiwanese non-small cell lung cancer (NSCLC) population including only adenocarcinomas and squamous cell carcinomas. Furthermore, to investigate associations between TAA expression and EGFR mutations and to evaluate these TAAs as prognostic markers for overall survival. The occurrence of single nucleotide polymorphisms in MAGEA3 and PRAME was also assessed.
View Article and Find Full Text PDFMelanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
August 2015
Collapsin response mediator protein 1 (CRMP-1) is the first identified member of the CRMP family and is crucial for both the mediation of neuronal differentiation and in suppressing the invasion of lung cancer. The crystal structure of full-length human CRMP-1 was determined at a resolution of 3 Å. Human CRMP-1 comprises a tetrameric assembly; its overall structure is similar to that of mouse CRMP-1, but the measured electron density of the C-terminal residues 488-496 show a randomly coiled link that connects the protomers to each other, within which residues 497-572 are proteolytically susceptible in vivo.
View Article and Find Full Text PDFα-parvin (PARVA) is known to be involved in the linkage of integrins, regulation of actin cytoskeleton dynamics and cell survival. However, the role that PARVA plays in cancer progression remains unclear. Here, using a lung cancer invasion cell line model and expression microarrays, we identify PARVA as a potential oncogene.
View Article and Find Full Text PDFRationale: Despite advances in treatment and prognosis of non-small cell lung cancer (NSCLC), patient outcomes are still unsatisfactory.
Objectives: To reduce the morbidity and mortality of patients with NSCLC, a more comprehensive understanding of mechanisms involved in cancer progression is urgently needed.
Methods: By comparison of gene expression profiles in the cell line pair with differential invasion ability, CL1-0 and CL1-5, we found that Shisa3 was highly expressed in the low invasive cells.